
Citizen Electronic Identities using TPM 2.0

Thomas Nyman
Aalto University and
University of Helsinki
thomas.nyman@aalto.fi

Jan-Erik Ekberg
Trustonic

jan-erik.ekberg@trustonic.com

N. Asokan
Aalto University and
University of Helsinki

asokan@acm.org

ABSTRACT
Electronic Identification (eID) is becoming commonplace in
several European countries. eID is typically used to authen-
ticate to government e-services, but is also used for other
services, such as public transit, e-banking, and physical se-
curity access control. Typical eID tokens take the form
of physical smart cards, but successes in merging eID into
phone operator SIM cards show that eID tokens integrated
into a personal device can offer better usability compared
to standalone tokens. At the same time, trusted hardware
that enables secure storage and isolated processing of sensi-
tive data have become commonplace both on PC platforms
as well as mobile devices.

Some time ago, the Trusted Computing Group (TCG)
released the version 2.0 of the Trusted Platform Module
(TPM) specification. We propose an eID architecture based
on the new, rich authorization model introduced in the
TCGs TPM 2.0. The goal of the design is to improve
the overall security and usability compared to traditional
smart card-based solutions. We also provide, to the best
our knowledge, the first accessible description of the TPM
2.0 authorization model.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

1. INTRODUCTION
Identification and authentication of citizens using Elec-

tronic Identification (eID) mechanisms is beginning to be
deployed in several European countries. In some countries,
such as Estonia, eID tokens are already used widely, while
eID use is taking hold in other countries such as Belgium,
Austria and Spain [11]. The typical use of eID is to ac-
cess government services such as filing tax returns, accessing
healthcare records or digitally signing applications for state
benefits. However, since eID tokens provide strong identity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
TrustED’14, November 3, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3149-4/14/11 ...$15.00.
http://dx.doi.org/10.1145/2666141.2666146.

verification, they are also used for other services, both pub-
lic and private. For example in Estonia, more than 100 000
persons use their eID cards as a form of public transport tick-
ets [11]. They are also used as substitutes for driving licenses
and e-banking tokens, as well as physical access control to-
kens for libraries and swimming pools [12]. Furthermore,
personal computer operating systems allow for seamless in-
tegration of PKCS#15 cards which makes it possible to use
them with common applications such as e-mail clients with
S/MIME support.

Identity tokens, referred to as “Electronic Signature Prod-
ucts” (ESPs) by the relevant EU directives, must be trust-
worthy. ESPs are logically isolated security tokens that use
a signature key to digitally sign a request on behalf of a
user and thereby prove the user identity. The ESPs are un-
der the control of users, and can be carried by them or be
integrated into their devices. The ESP is, however, not nec-
essarily a physical smart card — so far, the ESP function has
also been successfully integrated into operator SIM cards1,2,
as well as in network services controlled by password-based
access. With the increased usage of personal user devices,
integrating an eID mechanism securely also in these devices
will help improve usability of such eID compared to stand-
alone eID tokens.

Given the centrality of the role eID architectures will play
in the lives of people, it is important to identify and ensure
the security, usability and regulatory requirements an eID
architecture should meet in order to be deemed trustwor-
thy. There are two major requirements that need to be met.
First, the link between the natural person represented by an
eID and the person using that eID must be established. Leg-
islation typically provides exact regulation on the required
issuance procedure for physical identity tokens. Since an eID
is to be interchangeable with a physical one, the same laws
need to be applied to eID issuance with little or no modi-
fication [12]. Second, the eID credentials must be logically
isolated from other software and must be used only when
the person associated with the eID intends it. The latter
requirement is met by subjecting the use of the eID creden-
tial to user authentication, usually based on PINs. PINs
protecting eID credentials are subject to a number of policy
restrictions intended to balance security and usability [7].
For instance, the eID issuer or a service provider relying on
eID may stipulate the type of protection (e.g. PIN) for the
credential. Also, since a personal device can hold multiple

1Estonian Mobile-ID: http://e-estonia.com/component/mobile-id/
2Finnish Mobile Certificate: http://www.mobiilivarmenne.fi/en/

http://e-estonia.com/component/mobile-id/
http://www.mobiilivarmenne.fi/en/

eID-related credentials, it must be possible to associate the
same PIN with multiple credentials.

The Trusted Computing Group (TCG)3 is the leading or-
ganization specifying standards for trusted hardware on a
wide range of devices ranging from servers and personal com-
puters to mobile devices. Hundreds of millions of Trusted
Platform Modules (TPMs) are deployed in such devices.
The new version of the TPM specification4 includes a new,
rich authorization model for specifying flexible access con-
trol policies for objects protected by the TPM. This makes
it possible to support the kind of complex policies required
for protecting eID credentials on the range of devices tradi-
tionally equipped with TPMs. TPM 2.0 specifications have
been public for some time. However, as far as we are aware,
there has been no accessible explanation of the TPM 2.0
authorization model.

In this paper, we describe how an eID architecture can be
designed and implemented using TPM 2.0. In particular, we
make the following contributions:

• We provide the first accessible description of the
TPM 2.0 authorization model. We believe that
this will help researchers understand the power of the
model and to design other security and privacy solu-
tions based on it.

• We describe the detailed design of an eID archi-
tecture based on TPM 2.0. We show how this solution
improves the overall security and usability compared
to eID solutions based on traditional physical tokens
such as removable smart cards.

• We identify possible enhancements to the TPM
2.0 authorization model. If adopted, these en-
hancements would further improve the flexilibility of
the authorization model, and greatly simplify the def-
inition of certain kinds of policies.

The paper is organized as follows: Section 2 introduces
necessary background on current European eID solutions
and TPMs. In particular, Section 2.3.4 describes the TPM
2.0 authorization model in detail. Section 3 introduces the
requirements for our design, while the design itself is pre-
sented in Section 4. An analysis of the design is given in
Section 5. Section 6 suggests some potential improvements
to the current TPM 2.0 authorization model. Related work
is discussed in Section 7. Section 8 concludes.

2. BACKGROUND

2.1 eID in Europe
The legal status of eID mechanisms in Europe is based

on the EU signature directive from 1999 (1999/93/EC)
and the data protection and privacy directives from 1995
(95/46/EC) and 2002 (2002/58/EC) [10]. These directives
guarantee legal equivalence between digital signatures done
with the citizen cards and physical signatures by the as-
sociated person. They set the privacy framework for how
identity information can be stored and managed in servers
interacting with identified citizens.

Technically, the current European ID cards are often
(contactless) ISO 7816 smart cards, corresponding to the

3http://www.trustedcomputinggroup.org/
4http://www.trustedcomputinggroup.org/media room/news/352

Figure 1: FIDO authenticator reference model

PKCS#15 interface standard of which there are jurisdiction-
specific profiles. Most identity cards contain at least two
signature keys and provide two forms of signatures — the
legally binding “qualified” signature key for document sign-
ing is separated from the “authentication” keys to be used in
more interactive settings. Key usage authorization is gov-
erned with PINs.

Such identity tokens come with a number of drawbacks
that influence large-scale deployment; the physical token
must be present for each authentication, and all devices must
be equipped with compatible card readers. As most smart
cards lack user interfaces, if credential authorization requires
a PIN, users typically have to enter it via a potentially un-
trusted device.

Nevertheless, in the EU, the main challenges hindering the
adoption of an interoperable pan-European eID scheme are
considered to be not only technological, but also legal. In a
recent report by the eID team in the European Commission’s
Institute for Prospective Technological Studies (IPTS) [2],
a series of principles that aim at providing the legal un-
derpinning for a future eID legal scheme are elaborated
on. These include, among others, the principles of user-
centricity, anonymity and pseudonimity and the principles
of multiple identities, identity portability and un-linkability.

2.2 FIDO Alliance
The Fast Identity Online (FIDO) alliance5 is an indus-

try consortium whose mission is to reduce the reliance on
passwords for user authentication in internet transactions.
The alliance has the backing of many industry giants, and
may turn out to be a significant reference model even for
government eID applications.

The FIDO specifications define authentication architec-
tures and protocols based on strong authentication and
biometrics [9]. The Universal Authentication Framework
(UAF) protocol enables online services to support password-
less and multi-factor security. In fact, a typical eID creden-
tial is very close to the reference authenticator component
in the FIDO architecture (see Figure 1). The credential can

5https://fidoalliance.org/specifications

http://www.trustedcomputinggroup.org/
http://www.trustedcomputinggroup.org/media_room/news/352
https://fidoalliance.org/specifications

(and should) have support for device-local user authentica-
tion for credential enablement, that can take the form of a
PIN, password or e.g. a biometric.

However, what sets the FIDO protocols apart from many
legacy eID setups, is that FIDO clients generate service-
provider specific asymmetric key pairs for authentication.
Using a different key pair with every service provider im-
proves user privacy, since it protects against linking the ac-
tivity of a user in cases where service providers collude. Sup-
porting many dynamically allocatable authentication keys is
not technically difficult to implement in TPMs, or even with
smart cards. This is a practical requirement also for govern-
ment eID. In such a set up, it is desirable to bind several
key pairs to the same instance of device-local user authenti-
cation.

2.3 TPMs
TPMs are system components that provide a hardware-

based approach for secure non-volatile (NV) storage, crypto-
graphic key generation and use, sealed storage and (remote)
attestation. The primary scope of a TPM is to assure the
integrity of a platform by providing means to identify (and
report on) the hardware and software components that com-
prise the platform. The notion of “trust” in the context of
TPMs stems from the expectation of behaviour that can be
determined from this identity. The state of the TPM is sep-
arate from the state of the platform on which it reports, and
the only way for the host system to interact with a TPM is
through an interface defined in the TPM specifications [15,
16]. TPMs differentiate themselves from conventional secure
cryptoprocessors in that they provide platform binding, i.e.
proof of an association between a cryptographically verifi-
able identity and the platform itself.

TPMs can be implemented as single-chip components with
separate physical resources dedicated to the TPM. The first
TPM microcontrollers became available in 20056, and since
then TPMs are included in many new laptop computers,
primarily in business product lines. However, the notion of
a platform in the context of TPMs is not tied PCs, nor to a
particular operating system. Hardware-based Trusted Exe-
cution Environments [5] (TEEs) have become commonplace
in modern mobile platforms. They provide secure, integrity-
protected processing environments, consisting of processing,
memory and storage capabilities, that are isolated from the
regular processing environment, sometimes called the rich
execution environment (REE), where the device operating
system and applications run. As TEEs provide the neces-
sary capabilities for housing TPMs, firmware-based TPMs
are a more likely deployment model on mobile devices.

2.3.1 Attestation
Compared to smart cards, the issuance of secure func-

tionality to a TEE in a mobile device out in the field will
require an extra set of trust anchors. This particular prob-
lem setting is described in a whitepaper on User-Centric
Provisioning [1] published by the GlobalPlatform associa-
tion7. Compared to physical smart cards, which as a rule
are provisioned by a trustworthy manufacturer on behalf of
the token issuer, a TPM as a TEE function or application
is manufactured and put to market in a trust domain that

6Infineon press release announcing the SLB 9635 TPM 1.2:
http://www.infineon.com/cms/en/corporate/press/news/releases/
2005/132443.html

normally does not a priori include any relation to the ser-
vice issuer. Thus, the connection between the token issuer
trust domain and the TEE must be established at service
provisioning time.

At large this problem is one of attestation, i.e. the service
issuing entity must both authenticate the targeted endpoint
as well as convince itself of the current setup, version and
revocation status of the TEE deployed in that endpoint.
Furthermore, for data provisioning the issuer must confirm
that the endpoint within the TEE, i.e. the Trusted Appli-
cation (TA), will be the issued service and not some other
code running in the TEE.

In physical TPMs, the attestation property is embodied
by Endorsement Keys (EKs) — unique device secret keys
that are associated with a device certificate via a trusted
party, like the TPM manufacturer. In the TPM 1.2 speci-
fication the endorsement key is a decryption key which, us-
ing a trustworthy protocol to a “privacy CA”, can certify
locally generated “Attestation Identity Keys” (AIKs) – sig-
nature keys used in the actual attestation events. In the
TPM 2.0 specification the endorsement key can also be a
signature key. With physical TPM chips, the generation
of the EK credential can take place during chip manufac-
turing, and the credential is best stored in the non-volatile
memory of the TPM chip for later use. This approach needs
no attestation external to the TPM, since the manufacturing
process can be secured to a needed level. On the other hand,
for post-manufacturing deployment of firmware TPMs, rel-
evant attestation needs to be provided by the underlying
platform. In this paper we assume that the TPM 2.0 (and
its EK) can be properly attested by an underlying function-
ality, and therefore the eID service provider, whether being
the government or a private entity, can trust the TPM they
are interacting with as the device-specific, fully isolated se-
curity component that it is defined to be.

2.3.2 PCRs
Platform Configuration Registers (PCRs) are integrity-

protected registers in TPMs that are used to store aggregate
measurements regarding the security state of the system.
A PCR value is a representation of the state of a particu-
lar (software) environment. Each PCR holds a digest value
consisting of an accumulative hash of previous PCR values.
Apart from resetting the PCR to an initial value, the only
way to modify a PCR value is to extend a measurement
value into the PCR. When a measurement is extended into
a PCR, the new digest value is calculated as follows:

PCRnew = H(PCRold||digest)

where

PCRnew is the new digest value being stored in the PCR

PCRold is the previous digest value stored in the PCR

H() is the hash function associated with the PCR

digest is the measurement value extended into the PCR

As a result of the old digest value being hashed into the
new one, any deviation in a reported sequence of events
causes an irrevocable change in the eventual PCR digest
value. In other words, the PCR digest value is unique for
the specific order and combination of digest values that have
been extended into a particular PCR. The state of a system,

7http://www.globalplatform.org/

http://www.infineon.com/cms/en/corporate/press/news/releases/2005/132443.html
http://www.infineon.com/cms/en/corporate/press/news/releases/2005/132443.html
http://www.globalplatform.org/

represented by a set of PCRs, can be used in attestation (see
Section 2.3.1).

2.3.3 TPM 1.2 Authorization
In the TPM 1.2 specification [15], access to TPM opera-

tions and objects secured by the TPM (e.g. cryptographic
keys) are protected via an authorization mechanism. Access
to such an object is obtained via the proof of knowledge of a
shared secret associated with the object. In TPM parlance,
this shared secret is known as the AuthData of the object.
Henceforth, we refer to this shared secret as the owner au-
thorization value, as in general, knowledge of the AuthData is
treated as complete proof of ownership of a protected object
or operation, with the exception of asymmetric keys locked
to a set of particular PCR values during their creation (as
discussed below). The TPM places no additional require-
ments on the use of the object. An overview of the TPM
1.2 authorization model is shown in Figure 2a.

In order to securely pass proof-of-knowledge of the owner
authorization value to the TPM, three protocols are used;
the Object-Independent Authorization Protocol (OIAP), the
Object-Specific Authorization Protocol (OSAP), and the
Delegate-Specific Authorization Protocol (DSAP). These
protocols allow the caller to establish a confidential autho-
rization session with the TPM. Depending on the protocol
used, the authorization session has different properties, e.g.
the OIAP protocol allows access to multiple protected ob-
jects to be authorized during the same authorization session,
with the limitation that OIAP sessions cannot be used for
key creation, or other operations that would introduce new
authorization information to the TPM. OSAP sessions, on
the other hand can only be used manipulate a single object,
but allows new authorization information to be transmitted
to the TPM. DSAP provides support for delegating access to
an object without disclosing its owner authorization value.
Instead, object owners may specify a set of operations on an
object, which are authorized via an delegation authorization
value, provided by the caller as the authData instead of the
owner authorization value when operations on an object are
invoked using delegated privileges.

In addition, as mentioned earlier, cryptographic keys may
be locked to particular PCR values upon key creation. If
this is the case, the key is only usable as long as certain
PCRs have the particular values associated with the locked
key. In this way, PCR values can be used to ensure that
certain keys are accessible only to authorized software. This
is typically used in combination with the DSAP delegation
mechanism to allow a trusted process access to a protected
object without user intervention. DSAP checks for the con-
tinued validity of such PCR selections, and any change to
the PCR values causes the invalidation of the DSAP session.
The combination of the delegate authorization value and
PCR selections gives the TPM 1.2 four distinct authoriza-
tion modes, listed in Table 1. When a PCR selection is set,
the delegation authorization value associated with the dele-
gated key may be a fixed, well-known, value (case 3©). This
is because, if the trusted process is to execute automatically,
the only way for the trusted process to store the delegation
authorization value would be to seal8 it against the process’s
PCR measurement values, but as the delegation mechanism
already checks the PCR selections, the verification of the
delegate authorization value is redundant.
8Sealing data against some PCR values refers to the act of encrypting
the data in such a way that the TPM will later decrypt it only if the

case authValue PCR selection authorization method

1© secret yes
password and
platform state

2© secret no password
3© well-known yes platform state
4© well-known no —

Table 1: TPM 1.2 authorization modes

2.3.4 TPM 2.0 Enhanced Authorization
In the TPM 2.0 specification [16], objects stored within

the TPM have an authValue property associated with them.
The authValue is directly comparable to the TPM 1.2
AuthData, and may be used as a password for object autho-
rization. In addition, the TPM 2.0 specification introduces
Enhanced Authorization (EA) policies, which supersede the
TPM 1.2 authorization mechanisms and allows object own-
ers and administrators to require specific assertions or ac-
tions to take place before access to a protected object is
allowed. The policy associated with an object may be arbi-
trarily complex, even though internally the policy is reduced
to a single statistically unique digest value known as the
authPolicy. The authPolicy is associated with the TPM
entities the corresponding policy applies to. An overview
of the TPM 2.0 enhanced authorization model is shown in
Figure 2b.

Access to all objects making use of enhanced authoriza-
tion takes place via a session-based authorization procedure.
In order to access a TPM object, the caller initiates a pol-
icy session with the TPM. Subsequently the caller issues a
sequence of policy commands to the TPM.

Each policy command in the authorization policy is an
assertion that a particular statement is true in order for the
policy to be satisfied. For instance, a particular policy might
require that certain PCRs have specific values in order for
access to a TPM object to be authorized. As a side-effect of
a true policy assertion, each such policy command modifies
a digest value associated with the session, characteristic of
the particular policy expressed via the sequence of policy
commands. This running accumulation of the digest value
is called the policyDigest. When a policy session is started,
the associated policyDigest is initialized to zero. Then, as
each assertion corresponding to a certain policy command is
evaluated, the policyDigest is updated in a manner similar
to PCR extension:

policyDigestnew = H(policyDigestold || commandCode || commandArgs)

where

policyDigestnew is the new policy session digest value

policyDigestold is the previous policy session digest value

H() is the hash function used to update the policyDigest

commandCode is a value which identifies the policy command

commandArgs are dependent on the condition asserted

Some policy commands also have the ability to reset the
policyDigest value. This occurs conditionally with regard
to the previous policyDigest value. We will see that this
construct enables not only branching policies, but also poli-
cies to be changed based on signatures generated by an ex-
ternal authorization entity:

PCRs have the given values. This may be used to ensure that the
data can be opened only if the platform is in a known and trusted
state.

(a) TPM 1.2 authorization model (b) TPM 2.0 enhanced authorization model

Figure 2: Overview of TPM authorization models

Item Description
1© Object Key or data stored within the TPM
2© Object → authV alue Byte string used as password in access authorization
3© Object → authPolicy Digest value used for policy session access authorization
4© policySession Authorization used for gaining access to an Object by satisfying an

associated policy
5© policySession → commandCode Command code for TPM command being authorized
6© policySession → pcrUpdateCounter Stored PCR update counter reading
7© policySession → policyDigest Digest value calculated as a result of policy command invocation

during a policy session

Table 2: Glossary of TPM 2.0 Enhanced Authorization Terminology

if condition then

policyDigestnew = H(0 || commandCode || commandArgs)

Only policy commands modify the policyDigest; other
TPM 2.0 commands do not. Later in this section, we provide
selected examples of different types of policy commands. For
descriptions of other commands referred to elsewhere in this
paper, we refer the reader to our accompanying technical
report [14].

Finally, after the policy command sequence has been com-
pleted, the final value of the policyDigest for the session is
compared to the authPolicy of the object being accessed.
A match indicates that the sequence of invoked policy com-
mands matches, and satisfies the assertions expressed by
the policy, successfully completing the authorization. The
authPolicy value associated with an object upon creation
can either be calculated in software, or in a special trial
policy session, during which all assertions are assumed to
succeed and the policyDigest can be retrieved from the
TPM at the end of the session.

Types of Policy Assertions.
TPM 2.0 EA policy commands fall into three categories:

immediate, deferred, and combined assertions. In this sec-
tion, we will provide examples and discuss the specifics of
each of the three policy assertion types.
Immediate assertions are policy commands which only
affect the policyDigest. An example of an immediate pol-
icy assertion is the TPM2_PolicyNV() command, which as-
serts an arithmetic comparison between an input value and
a value stored in a specified non-volatile storage element. If
the condition holds, the policyDigest is updated accord-
ingly, otherwise it remains unchanged. Specifically:

if NV alue op operand then

policyDigestnew = H(policyDigestold || TPM CC PolicyNV || args || NVName)

where

TPM CC PolicyNV is the policy command code

args is a hash over the input operands and operator

NV V alue is the value of the non-volatile storage element

NVName is the name of the non-volatile storage element

Deferred assertions unconditionally update the
policyDigest based on input values and record spe-
cific constraints in the context of the current policy session.
When the session is used to make the final authorization
decision, the stored constraints are validated at that time.
For instance, the TPM2_PolicyCommandCode() policy com-
mand is used to verify that the policy session is only used to
authorize a particular command. This is achieved by storing
the command code for the command being authorized in
the current session context. The policyDigest is updated
unconditionally, namely:

policyDigestnew = H(policyDigestold || TPM CC PolicyCommandCode || code)

where code is the command code for the TPM command
being authorized. When the final authorization decision is
made, the TPM will verify that the command used to oper-
ate on the object being authorized is in fact the command
identified by the command code stored in the session con-
text.
Combined assertions validate a precondition regarding
the TPM state, and record some parameters in the current
policy session context used for deferred checks later on. An
example is the TPM2_PolicyPCR() command, which can be
used to validate that a specified PCR has the expected value.

If the caller provides an expected value, the value of the spec-
ified PCR is compared immediately to the expected value; if
the values match, the policyDigest is updated accordingly:

policyDigestnew = H(policyDigestold || TPM CC PolicyPCR || PCRs || digest)

where

PCRs is a bit mask corresponding to the PCR selection

digest is the hash of the PCR values in the selection

If the caller does not provide an expected value, the
policyDigest is updated as indicated above, but the va-
lidity of the PCR values will not be known until the policy
session is used for authorization (i.e. when the policyDigest
is compared to the authPolicy). However, merely verify-
ing the PCR value as part of a precondition leaves the au-
thorization policy susceptible to Time-Of-Check Time-Of-
Use9 (TOCTOU) race conditions in cases where PCR val-
ues have changed in the interval between the invocation of
the TPM2_PolicyPCR() command, and the time the actual
authorization decision is made. To avoid TOCTOU condi-
tions, the TPM keeps track of PCR changes by incrementing
a monotonically increasing counter, the pcrUpdateCounter,
each time a PCR is updated. When TPM2_PolicyPCR() is
invoked, the current value of the PCR update counter is
stored in the current session context. If an expected value
was provided, the PCR update counter is updated only if
the immediate PCR value check succeeds. On subsequent
TPM2_PolicyPCR() invocations, and when the policy ses-
sion is used for authorization, the value of the PCR update
counter is compared against the stored counter; the autho-
rization will fail unless the counter values match.

Policy OR, and AND.
As mentioned in Section 2.3.4 branching policies are made

possible by resetting the policyDigest value as part of the
successful assertion. This disrupts the running digest value,
allowing subsequent assertions to proceed from an indepen-
dent, yet well-known, value. The logical disjunction is em-
bodied by the TPM2_PolicyOR() command. When invoked,
TPM2_PolicyOR() is passed a list of digest values, each corre-
sponding to a digest value that is accepted as a valid precon-
dition for a successful TPM2_PolicyOR(). The policyDigest
is updated conditionally only if its current value is in this
list:

if policySession→ policyDigest in digest1 . . . digestn then

policyDigestnew = H(0 || TPM CC PolicyOR || digests)

where

digest1 . . . digestn is a list of valid digest values10

digests is the concatenation digest1 || . . . || digestn

The reasoning behind this scheme is that
H(digest1|| . . . ||digestn) is a well-known, fixed value. For an
arbitrary digest′ /∈ {digest1 . . . digestn}, it is computation-
ally infeasible, due to the properties of the hash function H,
to find a concatenation digestx|| . . . ||digest′|| . . . ||digestz
such that:

9CWE-367: Time-of-check Time-of-use Race Condition:
http://cwe.mitre.org/data/definitions/367.html

10We note that the TPM 2.0 specification limits the number of digests
to n = 8. However, by nesting multiple TPM2_PolicyOR() operations,
the effective size of the list can be expanded indefinitely.

H(digest1|| . . . ||digestn) = H(digestx|| . . . ||digest′|| . . . ||digestz)

Although the set of EA policy commands does not in-
clude an explicit logical AND operation, the way the
policyDigest is updated by policy commands, each new
value being dependent on the previous one, not only acts as
an implicit logical conjunction, but also imposes an order de-
pendence on the sequence of consecutive policy commands.

External Authorization.
While some EA policies within the TPM may be altered

by changing the corresponding authPolicy value, policies
associated with key objects and NV memory elements may
not. However, it is often the case that static access control
policies are “brittle” in the sense that they cannot accommo-
date for changes in the system that makes the policy essen-
tially unusable. This applies for instance to a policy that
seals a piece of data to a set of fixed PCR values to ensure
that the data is only accessible when the system has been
booted in a specific configuration. In this case, the PCR
values could correspond to measurements of the BIOS and
operating system kernel. If there is a BIOS update by the
Original Equipment Manufacturer (OEM), the measurement
value in the corresponding PCR will change, rendering the
data inaccessible because the policy cannot accommodate
for the BIOS update in advance. These kinds of situations
require flexible policies that may be modified in an indirect
way after-the-fact. For such cases, the TPM 2.0 EA mecha-
nism provides the TPM2_PolicyAuthorize() command.

The TPM2_PolicyAuthorize() command asserts that the
current policyDigest is authorized by an external entity via
the signing of the corresponding digest value and an optional
policy classifier11. If the policyDigest is authorized in such
a way, it is reset, and replaced by the name of the signing
key used for authorization. If present, the policy classifier
can act as a nonce to limit the use of the signature key, as
the classifier is extended to the policyDigest:

if(V(keyHandleA, signature, policySession→ policyDigest)

policyDigestnew = H(0 || TPM CC PolicyAuthorize || keyNameA)

policyDigestnew+1 = H(policyDigestnew || policyRef)

where

A is the authorization key

V() is the signature verification algorithm for A

keyHandleA is the handle for A

signature is the signature of the policy to be authorized

keyNameA is the name of the object corresponding to A

policyRef is the policy classifier

The public portion of key objects stored by the TPM is
represented in the name of the object. In the case of asym-
metric keys, this means that the new policyDigest value is
derived, in part, from the public key of the authorizing en-
tity. If a symmetric key is used, its public portion is derived
by hashing the key material together with obfuscation values

11In practice, the signature is verified by the TPM in a separate
TPM2_VerifySignature() command invocation, which produces a ticket
that is subsequently passed to TPM2_PolicyAuthorize to, if valid, pro-
vide proof that the TPM has validated the signature using a particular
key. The reason for this seems to be purely a performance optimiza-
tion, as it is more efficient to verify the ticket than it would be to load
a TPM object each time authorization occurs to verify the signature.

http://cwe.mitre.org/data/definitions/367.html

which prevents the public portion from leaking information
about the sensitive key material. In other words, any key
can be used for the external authorization, but each indi-
vidual key will leave a matching trace in the policyDigest.
Therefore that binding will constitute the identification of
the key needed for the authorization.

Returning to our sealing example, the policy that seals the
data can be made robust with regards to software updates
via a TPM2_PolicyAuthorize() that occurs after the PCR
measurements have been extended into the policyDigest

with TPM2_PolicyPCR()12. This allows the OEM to pro-
vide a signature for PCR values corresponding to the new
BIOS. With either authorized set of of PCR values, the fi-
nal policyDigest value will be the same, even though the
intermediate values after TPM2_PolicyPCR() differ.

3. REQUIREMENTS
The requirements for an eID token can be divided into

functional, security, and privacy requirements. Some trans-
late into platform requirements, others are restricted to the
token itself or apply to token interaction. An overview of
eID requirements is shown below:

1. Functional requirements:

(a) Binding the identity of a physical person to mul-
tiple identity keys stored on personal device

i. One-to-many relationship between PIN and
keys

ii. PIN and PUK with limited number of tries

(b) API compatibility with smart card-based system

2. Security requirements:

(a) Cryptographic requirements

(b) Confidentiality of identity key

(c) Code isolation of operations on the key against
software and other keys stored on the device

3. Privacy requirements:

(a) Prevention of unauthorized access to credential

(b) Linkability control

3.1 Functional requirements
The Application Programming Interface (API) to eID to-

kens resident in mobile devices must be as similar as pos-
sible to the API of existing smart card-based ID systems
(Req. 1b), i.e. a PKCS#15-based interface, with a 3-attempt
PIN and a PUK for enabling key signatures (Req. 1(a)ii) is
the baseline in such an ecosystem. For TPM-based eID, a
compatibility layer to provide the necessary API interoper-
ability is needed.

Application requirements for eID sometimes also support
and refine the general security requirements. In discussions
with representatives of our local jurisdiction (personal corre-
spondence, Feb 28, 2014) [7], it became clear that there is a
wish to address the binding problem in mobile phone based
tokens by having multiple client keys, both in parallel and
over time (Req. 1a). This leads to a requirement that PIN

12In this case, the expected PCR values would not be provided by the
caller in the TPM2_PolicyPCR() invocation.

policy and PIN handling are linked to keys only by associa-
tion, e.g. using PIN values that are shared among many keys
and changeable independently from the key objects they are
associated with (Req. 1(a)i).

3.2 Security requirements
Security requirements include minimum token key

strength [8], and the use of modern hash algorithms in iden-
tity certificates. For most jurisdictions the minimum eID re-
quirement today is equivalent to 2048 bit RSA and SHA256
for the certificate signature. In this paper, we do not address
these requirements directly; for our purposes we assume that
the underlying TPM 2.0 implementation supports the nec-
essary primitives.

The requirements on the token platform have been sum-
marized by Dimitrienko et al. [4]. These are the confidential-
ity of the identity key and the code isolation for the identity
integrity verification algorithm operating on the identity key.
The isolation must hold against software in the device, but
also with regards to other credentials that may be stored and
used in the same token. The access control to the credential,
with respect to unauthorized users as well as unauthorized
code (e.g. malware) in the device must be guaranteed. Last,
the integrity of the credential code must be ascertained. Of-
ten it is also necessary to ascertain the origin or integrity of
the calling code as well.

Certification servers are subject to stringent security eval-
uation and processes, and certificate enrolment is also rightly
considered an important security function, since it cements
the proof of the binding between the physical person and his
identity token. Reliable attestation is therefore paramount
to proper enrolment (see Section 2.3.1).

3.3 Privacy requirements
Privacy requirements for eID [13] include preventing unau-

thorized access to the identity token and applying linkability
control either in the eID client or at a server. Mechanisms
to achieve the latter includes providing identity assertions
rather than full identity information as part of eID transac-
tions, and, where applicable, keeping digital citizen identity
numbers separate from conventional national identification
numbers, e.g. social security numbers. One way to achieve
this is the use of service-provider specific asymmetric keys,
as in the FIDO protocols. Protocol confidentiality, i.e. using
the identity only in the context of a secure channel, safe-
guards against eavesdropping.

4. DESIGN

4.1 Architecture
Our design addresses the security demands for an eID to-

ken, as outlined in Section 3. We operate in an system
architecture illustrated in Figure 3a. The device contains a
TPM 2.0. According to specification, this module operates
in isolation from the (REE) operating system, and has its
own non-volatile storage, random number source and needed
cryptographic primitives. The implementation of the TPM
2.0 module can be separate hardware, or, especially in mo-
bile devices, it can be implemented inside a TEE. For the
purposes of this paper, the chosen implementation path is
irrelevant.

According to TPM specifications, the end-user device
must provide a Core Root of Trust for Measurement

(a) System architecture (b) Device internal architecture

Figure 3: eID architecture

(CRTM) that supplies basic platform software integrity mea-
surements to the TPM in a reliable manner. This function
is provided for the TPM by the platform’s authenticated
or secure boot-up code, and is in Figure 3a represented by
the Unified Extensible Firmware Interface (UEFI) secure
boot [18]. For the purpose of the eID example, reliable mea-
surements of a) the OS and b) a component we call REE
helper need to be provided to the TPM. The version of the
OS (and e.g. its TPM drivers) and the REE helper that will
run our TPM policy represents the part of the software stack
that serves as a precondition for the TPM 2.0-based eID sys-
tem to work. We expect an authorization of the fact that
necessary components are in place and that e.g. user PINs
can be entered by the user at some level of assurance. We
will see that the integrity of the REE components are not
otherwise a requirement for the policy or the eID function
to work correctly.

Our eID system also contains off-device components. The
Registration Authority (RA) is the network facing entity that
provides credential enrolment. As part of the enrolment pro-
cess the RA also performs attestation of the device endpoint.
As was highlighted in Section 2.3.1, the details of platform
attestation are out of scope for this paper — we assume that
the TPM has an EK for which an associated platform cer-
tificate exists. Through this certificate, the RA can, with
standard TPM 2.0 functionality, assert the platform depen-
dence of the enrolled eID authentication keys. In our archi-
tecture we also associate a number of remote authorizations
for the TPM EA policy as being produced by the RA. Some
of these authorizations are permanent, others need to be dy-
namically refreshed. In a production system this off-device
Trusted Third Party (TTP) that produces the authoriza-
tions can be distributed, and need not necessarily always be
associated with the RA function, but it nevertheless is an
integral part of the security of our design.

The Certification Authority (CA) is the entity that pro-
vides the user certificate for the eID key as part of the en-
rolment process. It is common practice that the CA is not
combined with the RA, and often the CA is physically iso-
lated from the network used by the other entities in the
system.

The Service Provider (SP) is the entity that leverages the
eID, by validating the certificate and a signature by the eID
key on a fresh challenge provided by the SP. A very typical
use case in this context is a client-authenticated TLS sessions
to a government service or a bank13.

13eID is also often used for document signatures, in which case the
role of the SP becomes slighly different.

The REE helper is an important component in our de-
sign, although not many security requirements are put on it.
Since the TPM interfaces, and especially policy generation
are quite different from what can be expected by ordinary
developers mostly interested in making his/her application
eID-aware, the REE helper provides the interface typically
used for ID access and use — the PKCS#11 standard, and
operates to fulfill the requirements identified in Section 3.
The principal function of the REE helper is therefore to
translate the eID APIs and requirements into TPM library
commands and concepts. Since the usage policy in our ex-
ample will be mapped to TPM EA policy, we do not have
to require perfect integrity of the REE helper. In case its
integrity is compromised, the main possible consequence is
that the TPM policies will not be satisfied, leading to a De-
nial of Service (DoS) situation.

4.2 Authorization Policy
We discussed the basics of the TPM 2.0 EA policies in

Section 2.3.4. In this section we will describe how to to
express the following aspects of our requirements using EA
policy primitives:

• Platform integrity (Section 4.2.1)

• Restricting the number of PIN attempts (Section 4.2.2)

• Reset of the PIN entry counter (Section 4.2.3)

• PIN entry and comparison (Section 4.2.4)

• Credential revocation (expiration) (Section 4.2.5)

Figure 3b illustrates the TPM parameters and objects we
will use in the following description. Each following section
is accompanied by a listing of the TPM commands invoked
by the REE-helper to satisfy the policy. In these listings,
each command is represented in the form:

[digest ←] command(< in parameters > [, < out parameters >])

4.2.1 Platform integrity
The baseline of the policy (see Listing 1) is the invocation

of one or more TPM2_PolicyPCR() commands. The PCR
registers are reliably populated by boot-up measurements by
the CRTM, and these PCR values cannot be re-populated to
any known values after boot. Therefore, a TPM2_PolicyPCR

command that maps the values of these PCRs into the policy
session will identify whether the device was booted into a
software state recognizable as part of the policy, or into some
other state.

To make the policy modular, e.g. to make it possible to
update the REE helper to a newer version, it makes sense

d0 ←TPM2_StartAuthSession(
<keyHandleeID ,sessionTypepolicy >,)
<sessionHandleeID >)

d1 ←TPM2_PolicyPCR(<sessionHandleeID , pcrSelection>)
[. . .]
TPM2_LoadExternal(<pubKeyA>, <keyHandleA >)
TPM2_VerifySignature(

<keyHandleA, siga>, <ticket{a,A} >)

d2 ←TPM2_PolicyAuthorize(
<sessionHandleeID , signaturea, policyRefa,
keyNameA, ticket{a,A} >)

Listing 1: Platform integrity policy fragment

d′
0 ←TPM2_StartAuthSession(

<objectHandlectr ,sessionTypepolicy >, <sessionhandlectr >)

d′
1 ←TPM2_PolicyCommandCode(<TPM_CC_NV_READ >)

TPM2_NV_Read(<sessionhandlectr , ctr>, <n>)

d3 ←TPM2_PolicyNV(<sessionHandleeID , ctr, n, eq>)

d′′
0 ←TPM2_StartAuthSession(

<keyHandlectr′ ,sessionTypepolicy >, <sessionHandlectr′ >)

d′′
1 ←TPM2_PolicyCommandCode(<TPM_CC_NV_Increment >)

TPM2_NV_Increment(<sessionhandlectr , ctr>)

d
(n,n+1)
←TPM2_PolicyNV(sessionHandleeID , <ctr, n + 1, eq>)

d4 ←TPM2_PolicyOR(<sessionHandleeID , d(0,1),d(1,2),d(2,3) >)

[counter reset (see Section 4.2.3)]
TPM2_VerifySignature(

<keyHandleA, signatureb>, <ticket{b,A} >)

d5 ←TPM2_PolicyAuthorize(
<sessionHandleeID , signatureb, policyRefb,
keyNameA, ticket{b,A} >)

Listing 2: PIN attempt restriction policy fragment

to partition the policy collection with external authoriza-
tions. In Listing 1, this is based on an external public key
which is loaded to the TPM using the TPM2_LoadExternal()
command. Now, the external authorization can occur as de-
scribed in Section 2.3.4; first, the signature of the external
authorization, which is of a standardized format, is validated
with TPM2_VerifySignature(); second the locally signed
ticket produced by TPM2_VerifySignature() is passed to
TPM2_PolicyAuthorize(). As we can recall from our earlier
example, if the validated authorization matched the current
policyDigest for the session, the policyDigest is reset, and
replaced, essentially, by the public key hash of the public key
used to verify the signature.

4.2.2 Restricting the number of PIN attempts
The next policy aspect we consider is the number of failed

PIN attempts for the key we intend to use (Req 1(a)ii). To
capture this we use a NV storage element configured to act
as a counter, i.e. during its initialization it is associated with
an TPMA_NV_COUNTER attribute. This makes writes to the NV
element only possible in a monotonically increasing manner
using the TPM2_NV_Increment() command. We also assume
that the NV object holding the counter is associated with an
authorization policy of its own, where resetting the counter
is conditional to the entering of the correct PIN value as part
of the policy, but incrementing the counter is allowed for the
REE helper without restriction. The specifics of this policy
are described in Section 4.2.3. For now, the goal is to bind
proof of increment (that the counter has been incremented
by one during the policy session) into the policyDigest,
and assert that the final counter value is less than, or equal

to the allowed number of PIN attempts (see Listing 2). Note
that the invocation of TPM2_NV_Increment() cannot be di-
rectly determined in the policy session for the eID credential.
Hence a mere comparison between the current counter value
and the allowed number of attempts is insufficient to ensure
proper operation. Instead, we use TPM2_NV_Read() to re-
trieve the current counter value in the REE helper. Then
we bind the current counter value to the policy digest of the
main policy session using TPM2_PolicyNV(), increment the
counter in a separate session, then proceed to bind the now
incremented counter value to the main session policy digest.
Recall from Section 2.3.4 that TPM2_PolicyNV() makes its
comparison immediately, not in a deferred manner.

Let us assume that the maximum number of (failed) PIN
entry attempts allowed is three. In this case, the previous
policy segment should accept combinations of the NV stor-
age element value pairs (0,1), (1,2) and (2,3). All of these
represent different acceptable policyDigest values for the
policy session. The values can be collapsed into one using
the TPM2_PolicyOR() conjunction (see Section 2.3.4). The
REE helper, possibly with the aid of the RA, can compute
these expected values, which each is the result of the consec-
utive application of the prior TPM2_PolicyAuthorize() and
two TPM2_PolicyNV() invocations for one of the above pairs.
The resulting policyDigest value is now independent of the
value pair that was encoded into the policyDigest prior to
the TPM2_PolicyOR().

For consistency, we again normalize the policy construc-
tion by the application of another external authorization
originating from the RA. The reasoning for this is simi-
lar to the first stage normalization – for the PIN count we
can envision variations in e.g. which NV storage element is
used as the PIN counter, or possibly the maximum allowed
attempts. Note that signature used for this normalization
should include a different policyRef from the one applied
before. This is needed so that the TPM implicitly protects
against policy fragment re-ordering or the omission of some
fragments in the middle of a policy session.

4.2.3 PIN counter reset
On each attempted use of the eID signature key, the PIN

entry counter is incremented. If the use of the signature key
succeeded, we know that a) the PIN received at the REE
helper was correct, and b) that the counter value had not
passed the threshold for allowed tries. If the threshold was
exceeded, we require that a PUK value is entered correctly
for the PIN counter to be reset. For this policy, we formalize
the PUK as high-entropy system-generated password value
that requires no inherent replay protection. However, as
shown by the PIN handling in the main policy, the PUK
could equally well be modelled like the PIN, with the same
replay-protection setup.

The TPM 2.0 specification does not provide the possi-
bility to reset a counter NV object, i.e. the actual reset
operation must be split into two parts; the erasure of the
counter object (to which an associated policy is applied),
and its recreation. The object recreation is conditioned to
“platform-specific” user authorization, which may be vary
from completely open to any platform-issued policy, i.e. as a
worst case we must assume it to be completely unprotected.
Herein lies one threat against our system for PIN replay pro-
tection. As the counter reset is not atomic, if an attacker
can disrupt the object creation e.g. power-cycle the device

with a physical reset switch at exactly the right moment af-
ter a successful authentication, the attacker might be able
to recreate the counter with a policy that allows reset with
less privileges. This sets the stage for brute-force PIN re-
solving, which in turn may lead to unauthorized use of the
signing key. This also constitutes one reason for why the
integrity measurement of the REE helper (see Section 4.2.1)
matters in the overall policy. Considering the complexity of
the attack, we argue that an attacker of this strength may
do better by just eavesdropping the PIN value when entered
by the user. There are also processes for command audits
in the TPM 2.0 specification that may be applied as pro-
tection for the atomicity problem, but these require another
internal or external trusted environment for validation.

The initial phase of the policy construction for PIN
counter reset mirrors that of key usage. First, the integrity
of the system and the REE helper is assured, followed by the
external authorization, as outlined in Section 4.2.1. The sec-
ond phase has two alternative paths. The first one mirrors
the updating of the PIN retry counts but sets the upper
limit to n + 1, i.e. if the limit was 3, as in the earlier ex-
ample, we use 4 as the limit here. This is followed by the
entering of the PIN, described in Section 4.2.4. The sec-
ond path is the PUK entry option. Here, the initial value
composition also include the integrity checks for the system
and REE helper. This is followed by binding the preferably
strong PUK password to the policy by the application of a
TPM2_PolicySecret() in a manner equivalent to PIN entry
(see Section 4.2.4.

The two possible policySession values are then com-
bined using TPM2_PolicyOR(), possibly followed by a
TPM2_PolicyAuthorize() for good measure. The final step
of the policy will have to account for the current state
of the session augmented with TPM2_PolicyCommandCode()

for the command TPM2_NV_UndefineSpace. The result-
ing session value must be ORed with the completely
open policy for counter updates and reads, i.e. a pol-
icy with TPM2_PolicyCommandCode() for the commands
TPM2_NV_Increment or TPM2_NV_Read. Finishing up the ob-
ject authPolicy value after this follows the main policy for
key use.

PIN updates also follow from the right to remove the NV
object holding the PIN. As defined in this case, those objects
have secret-based authorization, i.e. erasing them requires
only the knowledge of the respective PIN or PUK. The
recreation of the NV record, i.e. adding a new PIN with
TPM2_NV_DefineSpace() may require user authorization (a
user password).

4.2.4 PIN entry
The next stage of the policy after PIN counter handling

is the entry of the PIN. There are two dedicated pol-
icy commands for this, the TPM2_PolicyAuthValue() and
TPM2_PolicyPassword() both of which, with slight varia-
tions, defer a mandatory check of the PIN for the autho-
rized key object before object use (recall that most TPM
2.0 objects can contain a password value for authorization,
this is a feature that is inherited from the TPM 1.2 speci-
fication). However, associating the PIN value with the key
object is not acceptable, as we want to separate PIN ob-
jects from keys to allow a particular PIN to be shared by
many keys (Req. 1(a)i, and manage the life cycle of these
PINs (e.g. change of the PIN value) in isolation from the

d′′′
0 ←TPM2_StartAuthSession(

<objectHandlePIN , sessionTypepolicy >,
<sessionHandlePIN >)

d′′′
1 ←TPM2_PolicyPassword(

<sessionHandlePIN , authV aluePIN >)

d6 ←TPM2_PolicySecret(
<sessionHandleeID , objectHandlePIN ,
sessionHandlePIN >)

TPM2_VerifySignature(
<keyHandleA, signaturec>, <ticket{c,A} >)

d7 ←TPM2_PolicyAuthorize(
<sessionHandleeID , signaturec, policyRefc,
keyNameA, ticket{c,A} >)

d8 ←TPM2_PolicyCommandCode(<TPM_CC_Sign >)
TPM2_Sign(<keyHandle , digest >, <signature >)

Listing 3: PIN entry policy fragment

eID key objects referring to them. The TPM 2.0 specifica-
tion provides a policy command ideally suited for this kind
of setup: TPM2_PolicySecret() lets us associate the knowl-
edge of a secret, encoded in another object’s authValue with
the policy of the object we are intending to use. The policy
digest will be updated with the name of the object we as-
sociating to. In principle we could associate to any kind of
object, e.g. a “dummy” key, but using a NV record for this
purpose has the advantage that its name does not change
when re-created, whereas the public key component of an
asymmetric key pair is represented in its name. Thus we
use an empty NV record with the PIN as its authValue as
the associated object. On correct PIN entry (see Listing 3)
the REE helper is empowered with the knowledge necessary
to both validate, erase and replace the NV object with the
PIN, and it is up to the integrity protection of the REE
helper to ascertain its correct operation with regards to us-
ing (and erasing the PIN from its memory) in the different
TPM operations involving PINs and PUKs14. This part of
the policy may once again be rounded off with the applica-
tion of TPM2_PolicyAuthorize(), to potentially allow e.g.
for device-specific NV index variations for PIN handling.

Finally, TPM2_PolicyCommandCode() (for TPM2_Sign()) is
invoked to limit the capabilities the authorization sessions
grants on the key object. The final session policy value
(which is an aggregation of the device-specific license au-
thorization (public key) and the command code constraint)
is the value that shall be added to the key object when
the key is created by TPM2_Create(). The value can be at-
tested by the RA, since key creation can happen in a remote-
originated authenticated channel, and the value can be con-
firmed by returned attributes (e.g. creationData). In fact,
if the RA makes sure that no two licenses issued to a spe-
cific endpoint are alike, all keys can be created with the same
authPolicy value. The policy construct is flexible enough
to account for all optionality as part of the individual RA-
originating authorizations. This even holds when the policy
is augmented with extra functionality, e.g. such as described
in the following section.

4.2.5 Credential revocation
With removable tokens such as smart cards, credential

revocation often relies solely on certificate revocation, and

14The obvious vulnerabilities with PIN handling in the REE can be
remedied by hardware-supported secure PIN entry. This “Secure UI”
can be mapped to the TPM concept of a higher locality – a binding
that can be included in TPM EA policy. Such setups are for now
highly device-specific, and we do no consider this further in this paper.

elaborate protocols and constructs such as Certificate Revo-
cation Lists (CRLs) and on-line protocols such as the On-
Line Certificate Status Protocol (OCSP) allow for service
providers to confirm the revocation status of a credential
within the lifetime indicated in its certificate. However, with
TEEs and TPMs, credential revocation can also be man-
aged at the client-side as an additional security measure.
The TPM 2.0 specification has a millisecond-resolution clock
that is guaranteed to advance when the TPM is powered on,
but it also has periodic backup to NV memory, i.e. within
certain tolerance it behaves like a secure clock. Policy access
to this clock is through the TPM2_PolicyCounterTimer()

policy command. The command behaves as a timer, i.e.
a time comparison is made based on “time passed” since a
reference value which is provided in the command param-
eters, and which also is reflected in the policy value up-
date. This can be straight-forwardly mapped to a subse-
quent TPM2_PolicyAuthorize() with a device-specific key
originating from the RA, i.e. the RA can this way provide
time-dependent licenses for the usage of the eID key that
are more short-lived than the CA-generated certificate — a
“dead man’s switch” of sorts. This approach makes practical
sense, since it eases the interactive load on service providers,
who now can trust that signatures against eID certificates
residing in TPMs (a fact that can be logged in an certificate
attibute extension) have this “automatic” revocation prop-
erty, i.e. the keys stop being usable if key revocation occurs
within the time period of the CA-issued certificate.

5. ANALYSIS
We limit the scope of our analysis to the presented eID

requirements in the context of constructs described in Sec-
tion 4.2. While we acknowledge that formal verification of
the TPM 2.0 EA primitives is a worthy pursuit, we con-
sider it out of scope for this paper. Likewise, as all TPM
2.0 platforms are by definition required to provide platform
assurance, it is not in our power to add to or detract from
the trustworthiness of the platform itself.

In terms of functional requirements, the EA policy binds
key authorization to any number of shared or disjunct PINs
and PUKs, and as the TPM by internal design can support
any number of key objects, we claim that requirements by
both EU eID and FIDO are easily met. Necessary security
guarantees are provided by the TPM 2.0 itself. Of the pri-
vacy requirements, we do address linkability during token
use. There may also be linkability concerns during enrol-
ment and platform authentication, these are issues external
to this paper, but TPM 2.0 does provide optional Direct
Anonymous Attestation [3] (DAA) support to mitigate even
this threat. For credential user binding, we leverage TPM
2.0 EA, and provide the example as proof that we can pro-
vide retry-protection akin to that of PKCS#15 tokens.

Furthermore, we provide the dead man’s switch - type be-
haviour for the eID credential. This partially offline system
is one way of allowing eID to be reliably used with SPs that
have only point-to-point connectivity with the ESP, such as
physical doors or out-door event ticket validators.

We also want to highlight the relaxed integrity require-
ments on the REE helper as an important side-effect of
leveraging TPM 2.0 EA. Even as the presented authoriza-
tion model involves a large number of commands and oper-
ations, the entities securing the authorization are the pol-
icy sessions, in turn proteced by TPM 2.0. Except for the

atomicity issue highlighted in Section 4, all operational mis-
behaviour from the side of the REE helper constitutes only
Denial-of-Service.

6. PERCEIVED EA SHORTCOMINGS
Despite the flexibility of the TPM 2.0 EA mechanism,

on several occasions we find the need to resort to awkward
constructs in order to formulate primitives needed for our
policy. We identify the following instances where alterna-
tive design decisions than the ones made by the TPM 2.0
designers could have made policy constructions simpler and
more intuitive:
Including a secret value as part of a policy The cur-
rent TPM 2.0 specification EA policy command set does not
allow a secret value to be included as part of the policy. A
password entry, for instance, could be trivially turned into
a policy command, hashing that password directly into the
session policy value. Such a command could have found im-
mediate use in our design, allowing us to avoid the use of
“dummy” NV objects in Section 4.2.4 to hold the PIN and
PUK.
Linking two consecutive TPM commands The current
specification does not allow a TPM command to be condi-
tional on the outcome of another. For example, with such a
feature, we could have specified a policy: “reset PIN counter
only after successful sign-operation” which could have made
the PIN counter reset detailed in Section 4.2.3 simpler, and
thus stronger.
Access rights for comparing TPM objects Another
shortcoming that we encountered, is that comparisons be-
tween TPM objects, especially NV elements, can only be
done while obtaining read rights to the object being referred
to. This makes sense from a data-flow standpoint, but makes
many policy constructs cumbersome or even impossible.

7. RELATED WORK
The legal, technical and organizational challenges in im-

plementing a pan-European eID framework have been an-
alyzed in a number of studies. The study by Myhr [12]
mainly focuses on the issuance procedures and the lack of a
common unique identifier for physical persons on an Euro-
pean level that could be used in eID. Since the publication
of the study, a large study was conducted by the European
Union regarding eID interoperability for Pan-European E-
Government Services (PEGS)15. The results of this study
are a final report consisting of analysis and assessment of eID
interoperability requirements and 32 distinct country pro-
files on national schemes from both a legal and technical per-
spective. Mahler [10] in turn proposes a multi-stakeholder
governance model for an European eID influenced by multi-
stakeholder institutions used in Internet governance, such as
the ICANN and IETF.

There are also a few technical studies with the aim of
overcoming some of the limitations and challenges with con-
ventional, smart card-based identity tokens. TPMident [6]
is a two-factor authentication system based on TPMs, with
the goal of protecting users against identity theft. In
TPMident, conventional eID is used to establish initial trust
to a non-migratable authentication credential stored within
a TPM. The authors have also integrated TPMident with
the OpenID16 sign-on protocol.

15http://ec.europa.eu/idabc/en/document/6484.html

http://ec.europa.eu/idabc/en/document/6484.html

Dmitrienko et al. [4] present the design of a token-based
access control system for NFC-enabled smartphones which
allows users to maintain access control credentials for mul-
tiple resources. A key feature of their scheme is the ability
delegate access rights to other smartphone users without the
involvement of a central authority (RA).

Vossaert et al. [17] propose a system for secure PIN-
entry for smart cards. The solution relies on a workstation
equipped with a TEE and an attached smart card reader.
The authors present a proof-of-concept prototype of the sys-
tem using Belgian eID cards and PCs with TPM-based se-
cure execution environments.

8. CONCLUSIONS
On one hand, our eID architecture demonstrates that the

new TPM 2.0 Enhanced Authorization model can meet the
requirements of a widely deployed, real-world use-case. On
the other, despite the richness of the current EA model,
we identify some possible improvements that would enable
simpler, and thus more secure, solutions. We believe that
adding TPM 2.0 to the set of possible ESP implementations
will add a large class of (mobile) devices as eID endpoints.

In Section 5 we identified some shortcomings of the EA
model that, if addressed in TPM specifications, can increase
the flexibility of TPM 2.0 EA even further. Even with such
improvements, we still have to recognize the difference be-
tween full token programmability in an isolated, secure en-
vironment and a configurable authorization model to a well
defined and analyzed set of security primitives. Both ap-
proaches have their individual merits on the axes of flexibil-
ity vs. security.

As future work, we plan to complete a working Proof-
of-Concept ESP as presented in this paper, to be trialed
against a government PKI. Other research avenues include
integrating biometrics and other trustworthy I/O to the ESP
design.

9. ACKNOWLEDGMENTS
This work was financially supported in part by the In-

tel Collaborative Research Institute for Secure Computing
and by the Academy of Finland, project No 283135 (CloSe:
Cloud Security Services).

An extended version of this paper is available as a research
report [14].

10. REFERENCES
[1] A New Model: The Consumer-Centric Model and How

It Applies to the Mobile Ecosystem. Tech. rep.,
GlobalPlatform, Mar. 2012.

[2] Andrade, N., Monteleone, S., and Martin, A.
Electronic Identity in Europe: Legal challenges and
future perspectives. JRC-IPTS Working Papers
JRC78200, Institute for Prospective and Technological
Studies, Joint Research Centre, Dec. 2013.

[3] Chen, L., and Li, J. Flexible and Scalable Digital
Signatures in TPM 2.0. In Proceedings of the 2013
ACM SIGSAC Conference on Computer &
Communications Security (New York, NY, USA,
2013), CCS ’13, ACM, pp. 37–48.

16http://openid.net/

[4] Dmitrienko, A., Sadeghi, A.-R., Tamrakar, S.,
and Wachsmann, C. SmartTokens: Delegable Access
Control with NFC-Enabled Smartphones. In
Proceedings of the 5th International Conference on
Trust and Trustworthy Computing (Berlin, Heidelberg,
2012), TRUST’12, Springer-Verlag, pp. 219–238.

[5] Ekberg, J.-E., Kostiainen, K., and Asokan, N.
The Untapped Potential of Trusted Execution
Environments on Mobile Devices. Security Privacy,
IEEE 12, 4 (July 2014), 29–37.

[6] Klenk, A., Kinkelin, H., Eunicke, C., and
Carle, G. Preventing Identity Theft with Electronic
Identity Cards and the Trusted Platform Module. In
Proceedings of the Second European Workshop on
System Security (New York, NY, USA, 2009),
EUROSEC ’09, ACM, pp. 44–51.

[7] Laitinen, P. Personal communication, Feb. 2014.
Senior analyst, Finnish Population Register Centre.

[8] Lenstra, A. K., and Verheul, E. R. Selecting
Cryptographic Key Sizes. Journal of Cryptology 14
(1999), 255–293.

[9] Lindemann, R. The Evolution of Authentication. In
ISSE 2013 Securing Electronic Business Processes,
H. Reimer, N. Pohlmann, and W. Schneider, Eds.
Springer Fachmedien Wiesbaden, 2013, pp. 11–19.

[10] Mahler, T. Governance Models for Interoperable
Electronic Identities. Journal of International
Commercial Law and Technology 8, 2 (2013).

[11] Martens, T. Electronic identity management in
Estonia between market and state governance. Identity
in the Information Society 3, 1 (2010), 213–233.

[12] Myhr, T. Legal and Organizational Challenges and
Solutions for Achieving a pan-European Electronic ID
Solution. Inf. Secur. Tech. Rep. 13, 2 (May 2008),
76–82.

[13] Naumann, I., and Hogben, G. Privacy features of
European eID card specifications. Network Security
2008, 8 (2008), 9 – 13.

[14] Nyman, T., Ekberg, J.-E., and Asokan, N. Citizen
Electronic Identities using TPM 2.0. Tech. rep., Aalto
University, 2014, arXiv:1409.1023 [cs.CR].

[15] Trusted Computing Group. TPM Main
Specification Level 2 Version 1.2, Revision 116. Parts
1-3. http://www.trustedcomputinggroup.org/resources/tpm

main specification, Mar. 2011.

[16] Trusted Computing Group. Trusted Platform
Module Library Specification, Family ”2.0”, Level 00,
Revision 00.99. Parts 1-4.
http://www.trustedcomputinggroup.org/resources/tpm

library specification, Oct. 2014.

[17] Vossaert, J., Lapon, J., De Decker, B., and
Naessens, V. Trusted Computing to Increase
Security and Privacy in eID Authentication. In ICT
Systems Security and Privacy Protection,
N. Cuppens-Boulahia, F. Cuppens, S. Jajodia,
A. Abou El Kalam, and T. Sans, Eds., vol. 428 of
IFIP Advances in Information and Communication
Technology. Springer Berlin Heidelberg, 2014,
pp. 485–492.

[18] Wilkins, R., and Richardson, B. UEFI Secure
Boot in Modern Computer Security Solutions. Tech.
rep., UEFI Forum, Sept. 2013.

http://openid.net/
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

	Introduction
	Background
	eID in Europe
	FIDO Alliance
	TPMs
	Attestation
	PCRs
	TPM 1.2 Authorization
	TPM 2.0 Enhanced Authorization

	Requirements
	Functional requirements
	Security requirements
	Privacy requirements

	Design
	Architecture
	Authorization Policy
	Platform integrity
	Restricting the number of PIN attempts
	PIN counter reset
	PIN entry
	Credential revocation

	Analysis
	Perceived EA shortcomings
	Related work
	Conclusions
	Acknowledgments
	References

