
Mobile Platform Security
Trusted Execution Environments

TCE Summer School, 2014
N. Asokan

Aalto University and University of Helsinki

Jointly prepared with:
Jan-Erik Ekberg, Trustonic

Kari Kostiainen, ETH Zurich

3

What is a TEE?

Execution Environment

Isolated and integrity-
protected

Processor, memory,
storage, peripherals

From the “normal” execution environment
(Rich Execution Environment)

Chances are that:
You have devices with hardware-based TEEs in them!
But you don’t have (m)any apps using them

Trusted

4

Outline
• A look back

– Why do mobile devices have TEEs?

• Mobile hardware security
– What constitutes a TEE?

• Application development
– Mobile hardware security APIs

• Current standardization

– UEFI, NIST, Global Platform

• Current standardization: TCG
– TPM1.2 and TPM 2.0 extended authorization model

• A look ahead

– Challenges and summary

A LOOK BACK
Why do most mobile devices today have TEEs?

6

Platform security for mobile devices

Regulators
1. RF type approval secure storage
2. Theft deterrence immutable ID
3. …

Mobile network operators
1. Subsidy locks immutable ID
2. Copy protection device

authentication, app separation
3. …

End users
1. Reliability app separation
2. Theft deterrence immutable ID
3. Privacy app separation
4. …

Closed open
Different expectations
compared to PCs

7

Early adoption of platform security

GSM 02.09, 1993

3GPP TS 42.009, 2001

~2001 ~2002 ~2005 ~2008

Different starting points compared to PCs:
Widespread use of hardware and software platform security

8

Historical perspective

Cambridge CAP

1970 1980 1990 2000 2010

Reference monitor

Protection rings

VAX/VMS

Java security
architecture

Hardware-assisted
secure boot

Trusted Platform
Module (TPM)

Late launch

Computer security
Smart card security
Mobile security

Mobile hardware security
architectures

TI M-Shield

ARM TrustZone

Mobile OS security
architectures

Mobile Trusted
Module (MTM)

Simple smart cards

Java Card
platform

TPM 2.0

Intel SGX

GP TEE standards

TPM Mobile

On-board Credentials

First part

Second part

NIST

MOBILE HARDWARE SECURITY
What constitutes a TEE?

10

1. Platform integrity
2. Secure storage
3. Isolated execution
4. Device identification
5. Device authentication

TEE overview

Platform
integrity

Device certificate

Boot
sequence

Device
identification

Secure storage and
isolated execution

Cryptographic mechanisms

Device
authentication

Base identity

Verification root

Device key

Identity

Public
device key

Trusted
application

TEE mgmt
layer

Non-volatile
memory

Volatile memory

App

Mobile OS

REE

App

TEE mgmt layer

Trusted
app

Trusted
app

TEE

Mobile device hardware

11

Secure boot vs. authenticated boot

Secure boot

Firmware

OS Kernel checker

pass/fail Boot block

pass/fail

checker

checker

hash()

hash()

Authenticated boot

Firmware

Boot block

OS Kernel measurer

measurer

measurer state

hash()

hash()

aggregated hash

pass/fail

Why?
Start any configuration
State can be:
- bound to stored secrets (sealing) or resources
- reported to external verifier (remote attestation)

Why?
Start only known trusted configurations , but remember the state

12

Platform integrity

TEE code

Platform integrity

Launch boot code

Boot sequence

Trust anchor
(Code)

Legend

External
certificate

Trust anchor
(Hardware)

Volatile memory

Boot code certificate

Boot code hash

Verification root

Mobile device hardware TCB

Device key

Non-
volatile

memory

Device identification

Base
identity

Trusted
Application

(TA)

TEE
management

Secure storage and
isolated execution

Device manufacturer
public key: PKM

Cryptographic mechanisms

Signature verification
algorithm

Certified by device manufacturer:
SigSKM(H(boot code))

Stores measurements for
authenticated boot

13

Volatile memory

Verification root

Secure storage

TEE code

Secure storage

Mobile device hardware TCB

Trust anchor
(Code)

Legend

External
certificate

Trust anchor
(Hardware)

Device key
KD

Non-
volatile

memory

Cryptographic mechanisms

Device identification

Base
identity

Trusted
Application

(TA)

TEE
management

Platform integrity

Boot sequence

Protected
memory

Encryption
algorithm

Rollback
protection

Insecure
Storage

Sealed-data = AuthEncKD(data | ...)

14

Isolated execution

TEE code

Secure storage and
isolated execution

Mobile device hardware TCB

Trust anchor
(Code)

Legend

External
certificate

Trust anchor
(Hardware)

Trusted
Application

(TA)

Cryptographic mechanisms

Volatile memory

Verification root

TEE
management

TA code certificate

TA code hash

Device key
KD

Non-
volatile

memory

TEE Entry from Rich Execution Environment

Boot sequence

Platform integrity

Base
identity

Device identification

Controls TA
execution

Certified by device
manufacturer

15

Device identification

TEE code

Mobile device hardware TCB

Trust anchor
(Code)

Legend

External
certificate

Trust anchor
(Hardware)

Cryptographic mechanisms

Verification root

Identity certificate

Assigned identity

Device identification

Base
identity

Base identity

Platform integrity

Boot sequence

Volatile memory Device key
KD

Non-
volatile

memory

Trusted
Application

(TA)

TEE
management

Secure storage and
isolated execution

One fixed device
identity

Multiple assigned
identities

16

Verification root

Device authentication (and remote attestation)

TEE code

Mobile device hardware TCB

Trust anchor
(Code)

Legend

External
certificate

Trust anchor
(Hardware)

Cryptographic mechanisms

Device
certificate

Device public
key PKD

Device
authentication

Identity

Device key
KD

External trust
root

Volatile memory

Boot sequence

Platform integrity

Non-
volatile

memory

Trusted
Application

(TA)

TEE
management

Secure storage and
isolated execution

Issued by device
manufacturer

Used to protect/derive
signature key

Sign system state in
remote attestation

17

1. Platform integrity
– Secure boot
– Authenticated boot

Hardware security mechanisms (recap)

TEE code

Platform
integrity

TEE Entry from Rich Execution Environment

Identity certificate

Device certificate

Launch boot code

Boot code certificate TA code certificate

Boot
sequence

Device
identification

Secure storage and
isolated execution

Cryptographic mechanisms

Mobile device
hardware TCB

Device
authentication

Trust anchor
(Code)

Legend

External
certificate

Trust anchor
(Hardware)

Base identity

Verification root

External
trust root

Device key
KD

Base identity

Assigned
identity

Boot code hash TA code hash

Identity

Device pub.
key PKD

Trusted
application

TEE mgmt
layer

Non-volatile
memory

Volatile memory

2. Secure storage
3. Isolated execution

– Trusted Execution
Environment (TEE)

4. Device identification
5. Device authentication

– Remote attestation

18

Device

TEE entry

App

Device OS

Rich execution
environment (REE)

App

TEE management layer

Trusted
app

Trusted
app

TEE API

Trusted execution
environment (TEE)

Device hardware and firmware with TEE support

TEE system architecture

Architectures with single TEE
• ARM TrustZone
• TI M-Shield
• Smart card
• Crypto co-processor
• Trusted Platform Module

(TPM)

Architectures with multiple TEEs
• Intel SGX
• TPM (and “Late Launch”)
• Hypervisor

Figure adapted from: Global Platform. TEE system architecture. 2011.

http://www.globalplatform.org/specificationsdevice.asp

19

External Security
Co-processor

External Secure Element
(TPM, smart card)

TEE component

On-SoC

RAM ROM

OTP
Fields

External
Peripherals

Processor
core(s)

Off-chip
memory

TEE hardware realization alternatives

Figure adapted from: Global Platform. TEE system architecture. 2011.

Internal
peripherals

RAM ROM

OTP
Fields

External
Peripherals

Processor
core(s)

Off-chip
Memory

Internal
peripherals

Embedded Secure Element
(smart card)

On-chip Security
Subsystem

On-SoC

Processor Secure Environment
(TrustZone, M-Shield)

On-SoC

RAM ROM

OTP
Fields

External
Peripherals

Processor
core(s)

Off-chip
Memory

Internal
peripherals

Legend:
SoC : system-on-chip
OTP: one-time programmable

http://www.globalplatform.org/specificationsdevice.asp

20

ARM TrustZone architecture

TEE entry

App

Mobile OS

Normal world (REE)

App

Trusted OS

Trusted
app

Trusted
app

Secure world (TEE)

Device hardware

TrustZone system architecture

SoC internal bus
(carries status flag)

Main CPU Modem

Peripherals
(touchscreen,
USB, NFC…)

Memory
controller

Memory
controller

Off-chip/main
memory (DDR)

System on chip (SoC)

Boot
ROM

Access control
hardware

On-chip
memory

Access control
hardware

Access control
hardware

TrustZone hardware architecture

Interrupt
controller

Secure World and
Normal World

21

TrustZone overview
Secure World (SW) Normal World (NW)

User mode

Supervisor Supervisor

User User

SCR.NS=1

Boot sequence

Monitor
Secure Monitor call (SMC)

SCR.NS=0

SCR.NS := 1

Privileged mode

TZ-aware MMU

SW RW
NW NA

SW RO
NW WO

SW RW
NW RW

physical address range

Address space controllers

On-chip ROM On-chip RAM Main memory (DDR)

22

TrustZone example (1/2)

Secure World
Supervisor

Boot vector

1. Boot begins in Secure World Supervisor mode (set access control)

4. Prepare for Normal World boot

Secure World
Supervisor

3. Configure address controller (protect on-chip memory)

Secure World
Supervisor

2. Copy code and derive keys from on-chip ROM to on-chip RAM

Secure World Supervisor

On-chip ROM

On-chip RAM

Main memory
(DDR)

SW RW
NW NA

SW RW
NW NA

SW RW
NW NA

code (trusted OS)
device key SW NA

NW NA

SW RW
NW RW

code (boot loader)

23

TrustZone example (2/2)

5. Jump to Normal World Supervisor for traditional boot

Secure World
Supervisor Normal World

Supervisor

 An ordinary boot follows: Set
up MMU, load OS, drivers…

6. Set up trusted application execution

Supervisor

Normal World User

Secure World
Monitor

Normal World
Supervisor

SMC, NS0

7. Execute trusted application

On-chip ROM

On-chip RAM

Main memory
(DDR)

SW NA
NW NA

SW RW
NW NA

SW RW
NW RW

trusted app and
parameters

24

Mobile TEE deployment

• TrustZone support available in majority of current
smartphones

• Are there any APIs for developers?

TEE entry

App

Mobile OS

Normal world

App

Trusted OS

Trusted
app

Trusted
app

Secure world

Smartphone hardware

APPLICATION DEVELOPMENT
Mobile hardware security APIs

26

Mobile hardware security APIs

JSR 177 PKCS #11

1. Secure element APIs:
(smart cards)

2. Mobile hardware key stores:
iOS Key Store Android Key Store

Trustonic TEE API

3. Programmable TEE
“credential platforms”:

On-board Credentials

27

Android Key Store API

// create RSA key pair
Context ctx;
KeyPairGeneratorSpec spec = new KeyPairGeneratorSpec.Builder(ctx);
spec.setAlias(”key1")
…
spec.build();

KeyPairGenerator gen = KeyPairGenerator.getInstance("RSA", "AndroidKeyStore");
gen.initialize(spec);
KeyPair kp = gen.generateKeyPair();

// use private key for signing
AndroidRsaEngine rsa = new AndroidRsaEngine("key1", true);
PSSSigner signer = new PSSSigner(rsa, …);
signer.init(true, …);
signer.update(signedData, 0, signedData.length);
byte[] signature = signer.generateSignature();

Android Key Store example

Elenkov. Credential storage enhancements in Android 4.3. 2013.

http://nelenkov.blogspot.ch/2013/08/credential-storage-enhancements-android-43.html

28

Example Android Key Store implementation

TEE entry

Android
app

Android OS

Normal world

Android
app

Qualcomm Secure
Execution Environment

(QSEE)

Java Cryptography
Extensions (JCE)

Secure world

ARM with TrustZone

Keymaster
Trusted app

Android device

libQSEEcomAPI.so

Selected devices
• Android 4.3
• Nexus 4, Nexus 7

Keymaster operations
• GENERATE_KEYPAIR
• IMPORT_KEYPAIR
• SIGN_DATA
• VERIFY_DATA

Persistent storage on Normal World

Elenkov. Credential storage enhancements in Android 4.3. 2013.

http://nelenkov.blogspot.ch/2013/08/credential-storage-enhancements-android-43.html

29

Android Key Store

• Only predefined operations
– Signatures
– Encryption/decryption

• Global Platform is standardizing TEE APIs

• Developers cannot utilize programmability of mobile TEEs

– Not possible to run arbitrary trusted applications
– (Same limitations hold for hardware protected iOS key store)

• Different API abstraction and architecture needed…

• Example: On-board Credentials

Skip ObC

https://se-sy.org/projects/obc/
https://se-sy.org/projects/obc/
https://se-sy.org/projects/obc/
https://se-sy.org/projects/obc/

30

On-board Credentials goal

?
?

Secure yet inexpensive

An open credential platform that enables existing mobile TEEs

31

On-board Credentials (ObC) architecture
Mobile device

Driver

App

Mobile OS

Rich execution environment (REE)

App

Mobile device hardware with TEE support

ObC Interpreter ObC scheduler
Trusted app
dynamic state

Trusted app
persistent store

I/O data
Interpreted code
Interpreter state

Loaded
trusted app

ObC API
Provisioning, execution, sealing

Trusted execution
environment (TEE)

Ekberg. Securing Software Architectures for Trusted Processor Environments. Dissertation, Aalto University 2013.
Kostiainen. On-board Credentials: An Open Credential Platform for Mobile Devices. Dissertation, Aalto University 2012.

https://aaltodoc.aalto.fi/handle/123456789/10165
http://lib.tkk.fi/Diss/2012/isbn9789526045986/

32

Centralized provisioning vs. open provisioning

Centralized provisioning
(smart card)

Central authority

Service provider

Service user device

Service provider Service provider

Service user device

Service provider Service provider Service provider

Open provisioning
(On-board Credentials)

33

Open provisioning model

1. Certified device key + user authentication
PK

User device Service
provider

2. Provision new family
Enc(PK, FK) establish new security

domain (family)

4. Provision trusted applications
AuthEnc(FK, hash(app)) + app

3. Provision new secrets
AuthEnc(FK, secret)

Certified device key
PK

Pick new ‘family key’ FK
Encrypt family key
Enc(PK, FK)

Authorize trusted
applications
AuthEnc(FK, hash(app))

install trusted apps,
grant access to secrets

Encrypt and authenticate
secrets
AuthEnc(FK, secret) install secrets, associate

them to family

Principle of same-origin policy

Kostiainen, Ekberg, Asokan and Rantala. On-board Credentials with Open Provisioning. ASIACCS 2009.

Skip to App. Development summary

http://dl.acm.org/citation.cfm?doid=1533057.1533074

34

• Trusted application development
– BASIC like scripting language
– Common crypto primitives

available (RSA, AES, SHA)

• REE application counterpart
– Standard smartphone app

(Windows Phone)
– ObC API: provisioning, trusted

application execution

rem --- Quote operation
if mode == MODE_QUOTE
 read_array(IO_SEALED_RW, 2, pcr_10)
 read_array(IO_PLAIN_RW, 3, ext_nonce)

rem --- Create TPM_PCR_COMPOSITE
pcr_composite[0] = 0x0002 rem --- sizeOfSelect=2
pcr_composite[1] = 0x0004 rem --- PCR 10 selected (00 04)
pcr_composite[2] = 0x0000 rem --- PCR selection size 20
pcr_composite[3] = 0x0014
append_array(pcr_composite, pcr_10)
sha1(composite_hash, pcr_composite)

rem --- Create TPM_QUOTE_INFO
quote_info[0] = 0x0101 rem --- version (major/minor)
quote_info[1] = 0x0000 rem --- (revMajor/Minor)
quote_info[2] = 0x5155 rem --- fixed (`Q' and `U')
quote_info[3] = 0x4F54 rem --- fixed (`O' and `T')

append_array(quote_info, composite_hash)
append_array(quote_info, ext_nonce)
write_array(IO_PLAIN_RW, 1, pcr_composite)

rem --- Hash QUOTE_INFO for MirrorLink PA signing
sha1(quote_hash, quote_info)
write_array(IO_PLAIN_RW, 2, quote_hash)

On-board Credentials development

ObC trusted application extract

// install provisioned credential
secret = obc.InstallSecret(provSecret)
app = obc.InstallApp(provApplication)
credential = obc.CreateCredential(secret,
 app, authData)

// run installed credential
output = obc.RunCredential(credential, input)

ObC counterpart application pseudo code

Service
provider

35

Example application: MirrorLink attestation

• MirrorLink system enables smartphone services in automotive context
• Car head-unit needs to enforce driver distraction regulations
• Attestation protocol

– Defined using TPM structures (part of MirrorLink standard)
– Implemented as On-board Credentials trusted application (deployed to Nokia devices)

http://www.mirrorlink.com

Kostiainen, Asokan and Ekberg. Practical Property-Based Attestation
on Mobile Devices. TRUST 2011.

Car head-unit

1. Attestation request

2. Attestation response

3. Enforce driver
distraction regulations

Smartphone
(with ObC)

http://www.mirrorlink.com/
http://link.springer.com/chapter/10.1007/978-3-642-21599-5_6
http://link.springer.com/chapter/10.1007/978-3-642-21599-5_6

36

sig

Attestation protocol

TEE
Attestation

service
Attested

application

n

Verifier

Attest(n, p, PKA)

Attest(n, p || Hash(PKA))

sig, CertD p, sig, CertD, PKA

Check application identifier
Verify property p

sig Sign(SKD, n || p || Hash(PKA))

Pick random nonce n

appData, appSig

Verify CertD and sig
Check property p

Save PKA

appSig Sign(SKA, appData)

Verify appSig

Application
Identifier

Property

App1 P1, P2

App2 P3

… …

Pick property p to attest

Kostiainen, Asokan and Ekberg. Practical Property-Based Attestation on
Mobile Devices. TRUST 2011.

http://link.springer.com/chapter/10.1007/978-3-642-21599-5_6
http://link.springer.com/chapter/10.1007/978-3-642-21599-5_6

37

TEE Use Cases

• Mobile ticketing with NFC phones and TEE
• Offline terminals at public transport stations
• Mobile devices with periodic connectivity
 Such use case requires ticketing protocol with state keeping (authenticated counters)

• 110 traveler trial in New York (summer 2012)

• Implemented as On-board Credentials trusted application

Example application: Public transport ticketing

Ekberg and Tamrakar. Tapping and Tripping with NFC. TRUST 2013

Offline terminal

Transport
authority
system

Accounting
system

Online terminal

Transaction evidence
(authenticated counter)

http://link.springer.com/chapter/10.1007/978-3-642-38908-5_9

Transport ticketing protocol

38

REE

TEE

“Read”: CHALL, d

ctr, ack, Sigk(id, ctr)
SigX(“READ”, CHALL, d, ctr-ack, Sigk(id, ctr-d))

Command 1: Read card state and
 counter commitment

“Increment”: CHALL

ctr, SigX(“INCR”, CHALL, ctr) Command 2: Sign and increment ctr++

Operation

(none)

Command 3: Release commitment ack := ctrN

 “Release”: ctrN, Sigk2(idN, ctrN)

 “OK/Fail”

“Sign”: CHALL

SigX(“SIGN”, CHALL) Command 4: Sign challenge
(none)

Authenticated counters implemented as an ObC program

Ekberg and Tamrakar. Tapping and Tripping with NFC. TRUST 2013

http://link.springer.com/chapter/10.1007/978-3-642-38908-5_9

39

Application development summary

• Mobile TEEs previously used mainly for internal purposes
– DRM, subsidy lock

• Currently available third-party APIs enable only limited functionality
– Signatures, decryption
– Android key store
– iOS key store

• Programmable TEE platforms
– On-board Credentials
– Demonstrates that mobile TEEs can be safely
 opened for developers

TEE entry

App

Mobile OS

REE

App

Trusted OS

Trusted
app

Trusted
app

TEE

Device hardware

Mobile device

STANDARDIZATION
UEFI, NIST, Global Platform, Trusted Computing Group

41

TEE standards and specifications

- First versions of standards already out
- Goal: easier development and better interoperability

TEE entry

App

Mobile OS

REE

App

Trusted OS

Trusted
app

Trusted
app

TEE

Device hardware
Secure Boot

REE app API

TEE app API

TEE environment

Hardware
trust roots

Skip to Global Platform

UEFI
Secure Boot

43

Firmware init

EFI applications

EFI drivers

Device setup
(example: TrustZone)

Driver firmware setup

EFI drivers EFI drivers EFI OS loaders Boot loaders

 OS

UEFI –boot principle

Unified Extensible Firmware Interface Specification
Nyström et al: UEFI Networking and Pre-OS security (2011)

pass/fail

pass/fail

• UEFI standard intended as replacement for old BIOS
• Secure boot an optional feature

http://www.uefi.org/specs/download/UEFI_2.4.pdf
http://noggin.intel.com/sites/default/files/tech_journal_full_pdfs/intelr_technology_journal_volume_15_issue_1_2011.pdf

44

Platform Key (Pub/Priv)

Key Exchange Keys

Platform Firmware
Key Storage

tamper-resistant
updates governed by
 platform key

Image Information Table
hash
name, path
 Initialized / rejected

Successful &
failed
authorizations

Key management for update

(ref: UEFI spec)

Signature Database (s)

Keys allowed to
update

 tamper-resistant (rollback prevention)
 updates governed by keys

White list + Black list for database images

UEFI – secure boot

UEFI secure boot

• Thus far primarily used in PC platforms
– Also applicable to mobile devices

• Can be used to limit user choice?
– The specification defines user disabling
– Policy vs. mechanism

NIST
Hardware-based Trust Roots for Mobile Devices

47

Required security components are

a) Roots of Trust (RoT)

b) an application programming interface (API) to expose the

 RoT to the platform

“RoTs are preferably implemented in hardware”

“the APIs should be standardized”

Guidelines on Hardware-Rooted
Security in Mobile Devices (SP800-164, draft)

48

Root of Trust for Storage (RTS): repository and a
 protected interface to store and manage keying material

Root of Trust for Measurement (RTM): reliable measurements
 and assertions

Root of Trust for Verification (RTV): engine to verify digital signatures
associated with software/firmware

Root of Trust for Integrity (RTI): run-time protected storage
 for measurements and assertions

Root of Trust for Reporting (RTR): environment to manage
 identities and sign assertions

Roots of Trust (RoTs)

49

Root of Trust mapping

Platform
integrity

Device certificate

Boot
sequence

Device
identification

Secure storage and
isolated execution

Cryptographic mechanisms

Device
authentication

Base identity

Verification root

Device key

Identity

Public
device key

Trusted
application

TEE mgmt
layer

Non-volatile
memory

Volatile memory

RoT Storage RoT Verification

RoT Integrity RoT Reporting
RoT Measurement

GLOBAL PLATFORM
Trusted Execution Environment (TEE) specifications

52

GP standards for smart card systems used many years
• Examples: payment, ticketing
• Card interaction and provisioning protocols
• Reader terminal architecture and certification

Recently GP has released standards for mobile TEEs

• Architecture and interfaces

http://www.globalplatform.org/specificationsdevice.asp
- TEE System Architecture
- TEE Client API Specification v.1.0
- TEE Internal API Specification v1.0
- Trusted User Interface API v 1.0

Global Platform (GP)

http://www.globalplatform.org/specificationsdevice.asp

Isolation
boundary TEE

Trusted Operating System

Secure Storage Crypto I/O RPC

TEE Internal API v.1.0

Trusted
Application

Rich Execution
Environment OS

TEE Client API v.1.0

Application

Trusted User Interface API v.1.0

REE

TEE Driver

GP TEE System Architecture

Isolation
boundary TEE

Trusted Operating System

Secure Storage Crypto I/O RPC

TEE Internal API v.1.0

Trusted
Application

Rich Execution
Environment OS

TEE Client API v.1.0

Trusted User Interface API v.1.0

REE

TEE Driver

Interaction with Trusted Application

Application

1

2

REE App provides a pointer to its memory for the Trusted App
• Example: Efficient in place encryption

55

// 1. initialize context
TEEC_InitializeContext(&context, …);

// 2. establish shared memory
sm.size = 20;
sm.flags = TEEC_MEM_INPUT | TEEC_MEM_OUTPUT;
TEEC_AllocateSharedMemory(&context, &sm);

// 3. open communication session
TEEC_OpenSession(&context, &session, …);

// 4. setup parameters
operation.paramTypes = TEEC_PARAM_TYPES(TEEC_VALUE_INPUT, …);
operation.params[0].value.a = 1; // First parameter by value
operation.params[1].memref.parent = &sm; // Second parameter by reference
operation.params[1].memref.offset = 0;
operation.params[1].memref.size = 20;

// 5. invoke command
result = TEEC_InvokeCommand(&session, CMD_ENCRYPT_INIT, &operation, NULL);

TEE Client API example

D2 Val:1 CMD

Ref
N/A
N/A

Parameters:

56

// each Trusted App must implement the following functions…

// constructor and destructor
TA_CreateEntryPoint();
TA_DestroyEntryPoint();

// new session handling
TA_OpenSessionEntryPoint(uint32_t param_types, TEE_Param params[4], void **session)
TA_CloseSessionEntryPoint (…)

// incoming command handling
TA_InvokeCommandEntryPoint(void *session, uint32_t cmd,
 uint32_t param_types, TEE_Param params[4])
{
 switch(cmd)
 {
 case CMD_ENCRYPT_INIT:

 }
}

TEE Internal API example

In Global Platform model Trusted Applications are command-driven

57

RPC: Communication with other TAs

Secure storage: Trusted App can persistently store memory and objects

Storage and RPC (TEE internal API)

TEE_CreatePersistentObject(TEE_STORAGE_PRIVATE, flags, ..., handle)

TEE_ReadObjectData(handle, buffer, size, count);
TEE_WriteObjectData(handle, buffer, size);
TEE_SeekObjectData(handle, offset, ref);
TEE_TruncateObjectData(handle, size);

TEE_OpenTASession(TEE_UUID* destination, …, paramTypes, params[4], &session);
TEE_InvokeTACommand(session, …, commandId, paramTypes, params[4]);

Also APIs for crypto, time, and arithmetic operations…

58

Trusted User Interface API

• Trustworthy user interaction needed
– Provisioning
– User authentication
– Transaction confirmation

• Trusted User Interface API 1.0:

– TEE_TUIDisplayScreen

TEE entry

App

Mobile OS

REE

App

Trusted OS

Trusted
app

Trusted
app

TEE

Smartphone hardware

59

GP device committee is working on a TEE provisioning specification
User-centric provisioning white paper

Global Platform User-centric provisioning

token
provider

user service
provider

service
manager

http://www.globalplatform.org/documents/Consumer_Centric_Model_White_PaperMar2012.pdf

GP standards summary

• Specifications provide sufficient basis for TA development

• Issues
– Application installation (provisioning) model not yet defined
– Access to TEE typically controlled by the manufacturer
– User interaction

• Open TEE

– Virtual TEE platform for prototyping and testing
– Implements GP TEE interfaces
– https://github.com/Open-TEE

https://github.com/Open-TEE

TRUSTED COMPUTING GROUP

TPM 1.2 and TPM 2.0 EA

64

Trusted Platform Module (TPM)
• Collects state information about a system

• separate from system on which it reports

• For remote parties
• Remote attestation in well-defined manner
• Authorization for functionality provided by the TPM

• Locally

• Key generation and key use with TPM-resident keys
• Sealing: Secure binding with non-volatile storage
• Engine for cryptographic operations

65

RTM

Code 1
measure m1
send m1 to TPM
launch code 1

Code 2 measure m2
send m2 to TPM
launch code 2

Code 3 measure m3
send m3 to TPM
launch code 3

…

 Integrity-protected registers
 in volatile memory
 represent current system configuration

 Store aggregated platform ”state” measurement

 a given state reached ONLY via the correct
extension sequence
Requires a root of trust for measurement (RTM)

Platform Configuration Registers (PCRs)

Authenticated boot

Hnew=H(Hold | new)

H0= 0
H3=H (H (H (0|m1) |m2)|m3)

state

66

Use of platform measurements (1/2)

Remote attestation
– verifier sends a challenge
– attestation is SIGAIK(challenge, PCRvalue)

– AIK is a unique key specific to that TPM
 (“Attestation Identity Key”)

– attests to current system configuration

67

Use of platform measurements (2/2)

Sealing
– bind secret data to a specific configuration

– E.g.,: Create RSA key pair PK/SK when PCRX value is Y

– Bind private key: EncSRK(SK, PCRX=Y)

– SRK is known only to the TPM
– “Storage Root Key”

– TPM will “unseal” key only if PCRX value is Y
– Y is the “reference value”

TPM Mobile (Mobile Trusted Module)

A TPM profile for Mobile devices that adds mechanisms for

• Adaptation to TEEs:
– New roots of trust definitions and requirements

• Multi-Stakeholder Model (MSM):

– ”Certified boot”: Secure boot with TCG
authorizations

• Reference Integrity Metric (RIM) certificates:
– ”if PCRX matches reference, extend PCRY by target”

RIM Certificate

“If PCRX has value
Hold, extend PCRY
(from 0) by vnew

PCRY

PCRX

Hold

H(0|vnew)

verification
key

1. Verify

2. Update

TPM 2.0

• Recent specification, in public review
– Algorithm agility
– New enhanced authorization model
– “Library specification”

 Defines interface, not physical security chip

 Intended for various devices (not only PCs)

TPM 2.0 Mobile Reference Architecture

“Protected Environment”

– “the device SHALL implement Secure Boot”
– “the Protected Environment SHALL provide isolated execution”

TPM
Trusted Application

Isolation
boundary TEE

Trusted Operating
System

?

Rich Execution
Environment OS

TPM 2.0 Interface

Application

REE

TEE Driver

74

Authorization (policy) in TPM 1.2

TPM 1.2

System

System
state info

External auth (e.g. password) Object (e.g. key)

Object invocation

Object authorization

Reference values:
”PCR selection”
authData

75

TPM 2.0

‹ More expressive policy definition model

‹ Various policy preconditions

‹ Logical operations (AND, OR)

‹ A policy session accumulates all authorization information

76

Authorization (policy) in TPM 2.0

TPM 2.0

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

policySession:
policyDigest

Reference values:
authPolicy
authValue

External authorization:
 passwords
 signatures

Commands to include some
part of TPM 2.0 (system)
state in policy validation

77

An Example

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

policySession
policyDigest

authPolicy

PCR 1: mOS

PCR 2: mA

k1: private decryption key RSA_Decrypt (k1 c)

v11 <- TPM2_PolicyPCR(1, mOS)
 // v11 = h (0 || TPM_CC_PolicyPCR || 1 || mOS)
v12 <- TPM2_PolicyPCR(2, mA)
 // v12 = h (v11 || TPM_CC_PolicyPCR || 2 || mA)
v13 <- TPM2_PolicyCommandCode(RSA_Decrypt)
 // v13 = h (v12 || TPM_CC_ PolicyCommandCode || RSA_Decrypt)
RSA_Decrypt(k1, c)

Command sequence

Checks:
- policyDigest == authPolicy?
- deferred checks succeed?

- command == RSA_Decrypt?
- PCR 1 == mOS?
- PCR 2 == mA?

78

TPM2 Policy Session Contents

‹ Contains accumulated session policy value: policyDigest

newDigestValue := H(oldDigestValue ||
 commandCode || state_info)

‹ Some policy commands reset the value

IF condition THEN
newDigestValue := H(0 || commandCode
 || state:info)

‹ Can contain optional assertions for deferred policy checks to be made
at object access time.

policyDigest

Deferred checks:
- PCRs changed
- Applied command
- Command locality

policySession

79

TPM2 Policy Command Examples

‹ TPM2_PolicyPCR: Include PCR values in the authorization

 update policyDigest with [pcr index, pcr value]

 newDigest := H(oldDigest || TPM_CC_PolicyPCR || pcrs || digestTPM)

‹ TPM2_PolicyNV: Include a reference value and operation (<, >, eq)
for non-volatile memory area

 e.g., if counter5 > 2 then
 update policyDigest with [ref, op, mem.area]

 newDigest := H(oldDigest || TPM_CC_PolicyNV || args || nvIndex->Name)

80

TPM2 Deferred Policy Example

‹ TPM2_PolicyCommandCode: Include command code for later checking
during ”object invocation” operation:

 update policyDigest with [command code]

 newDigest := H(oldDigest || TPM_CC_PolicyCommandCode || code)

 additionally save policySession->commandCode := command code

policySession->commandCode checked at the time of object invocation!

81

Policy disjunction

TPM2_PolicyOR: Authorize one of several options:
 Input: List of digest values <D1, D2, D3, .. >

 IF policySession->policyDigest in List THEN
 newDigest := H(0 || TPM2_CC_PolicyOR || List)

 Reasoning: For a wrong digest Dx (not in <D1 D2 D3>) difficult
to find List2 = <Dx Dy, Dz, .. > where H(List) == H(List2)

policyDigest

H(.)

policyDigest

D1 D2 D3

policyDigest

policyDigest

D1 D2 D3

(Failing OR)

(Successful OR)

TPM_PolicyOR->

TPM_PolicyOR->

82

Policy conjunction
‹ No explicit AND command

‹ AND achieved by consecutive authorization commands order dependence

policyDigest

H(.)

PolicyCommandCode

D1 D2

Theoretical example: Use an OR to hide the
order dependence of an AND

PolicyPCR

policyDigest

PolicyPCR

PolicyCommandCode

83

External Authorization
TPM2_PolicyAuthorize: Validate a signature on a policyDigest:

 IF signature validates AND policySession->policyDigest in signed content
THEN
 newDigest := H(0 || TPM2_CC_PolicyAuthorize|| H(pub)|| ..)

pub

policyDigest

TPM2_PolicyAuthorize

priv

TPM2 +
 policySession

H(pub)

Z

Z

signature

Let’s try this out: example 1

• Developer D
– Has TPM2-protected keypair k1 and Application A
– Wants only A can use k1 via

• TPM2_RSA_Decrypt (key, ciphertext)

• Assume that
– OS measured into PCR1 (if correct OS: PCR1 =

mOS)
– Foreground app into PCR2 (if A: PCR2 = mA)

• What should authPolicy of k1 be?

85

Example 1

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

policySession
policyDigest

authPolicy

PCR 1: mOS

PCR 2: mA

k1: private decryption key RSA_Decrypt (k1 c)

v11 <- PolicyPCR(1, mOS)
 // v11 = h (0 || PolicyPCR || 1 || mOS)
v12 <- PolicyPCR(2, mA)
 // v12 = h (v11 || PolicyPCR || 2 || mA)
v13 <- PolicyCommandCode(RSA_Decrypt)
 // v13 = h (v12 || PolicyCommandCode || RSA_Decrypt)
RSA_Decrypt(k1, c)

Command sequence

Two checks:
- policyDigest == authPolicy?
- deferred checks succeed?

- command == RSA_Decrypt?
- PCR 1 == mOS?
- PCR 2 == mA?

NOTE: We drop “TPM2_” and
“TPM_” prefixes for simplicity…

Example 2

• What if D wants to authorize app A
(PCR2=mA) or app A’ (PCR2=mA’)

87

Example 2

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA

k1: private decryption key RSA_Decrypt (k1, c)

v11 <- PolicyPCR(1, mOS)
 // v11 = h (0 || PolicyPCR || 1 || mOS)
v12 <- PolicyPCR(2, mA)
 // v12 = h (v11 || PolicyPCR || 2 || mA)
v13 <- PolicyCommandCode(RSA_Decrypt)
 // v13 = h (v12 || PolicyCommandCode || RSA_Decrypt)
RSA_Decrypt(k1, c)

Command sequence

PCR 2: mA’

policySession
policyDigest

88

Example 2

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA

k1 : private decryption key RSA_Decrypt (k1, c)

v11 <- PolicyPCR(1, mOS)
 // v11 = h (0 || PolicyPCR || 1 || mOS)
v12 <- PolicyPCR(2, mA)
 // v12 = h (v11 || PolicyPCR || 2 || mA)
v22 <- PolicyOR({v12, v12’})
 // v22 = h (0 || PolicyOR || (v12 || v12’))
v23 <- PolicyCommandCode(RSA_Decrypt)
 // v23 = h (v22 || PolicyCommandCode || RSA_Decrypt)
RSA_Decrypt(k1, c)

Command sequence

policySession
policyDigest

89

Example 2

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA’

k1 : private decryption key RSA_Decrypt (k1, c)

v11 <- PolicyPCR(1, mOS)
 // v11 = h (0 || PolicyPCR || 1 || mOS)
v12’ <- PolicyPCR(2, mA’)
 // v12’ = h (v11 || PolicyPCR || 2 || mA’)
v22 <- PolicyOR({v12, v12’})
 // v22 = h (0 || PolicyOR || (v12 || v12’))
v23 <- PolicyCommandCode(RSA_Decrypt)
 //v23 = h (v22 || PolicyCommandCode || RSA_Decrypt)
RSA_Decrypt(k1, c)

Command sequence

policySession
policyDigest

90

Example 2’

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA

k1 : private decryption key RSA_Decrypt (k1, c)

PCR 2: mA’
PCR 2: ?

Allow any app by D

Command sequence

RSA_Decrypt(k1, c)

? (must be independent of PCR 2 value)
policySession
policyDigest

91

Example 2’

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA

k1 : private decryption key RSA_Decrypt (k1, c)

Command sequence

v11 <- PolicyPCR(1, mOS)
 // v11 = h (0 || PolicyPCR || 1 || mOS)
v12 <- PolicyPCR(2, mA)
 // v12 = h (v11 || PolicyPCR || 2 || mA)
v13 <- PolicyCommandCode(RSA_Decrypt)
 //v13 = h (v12 || PolicyCommandCode || RSA_Decrypt)
v24 <- PolicyAuthorize (signature)
 // where signature <- Sig_D(v13)
 // v24 = h (0 || PolicyAuthorize || PK_D)
RSA_Decrypt(k1, c)

PK_D/SK_D

Allow any app by D

policySession
policyDigest

92

policySession
policyDigest

Example 2’

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA’’

k1 : private decryption key RSA_Decrypt (k1, c)

Command sequence

v11 <- PolicyPCR(1, mOS)
 // v11 = h (0 || PolicyPCR || 1 || mOS)
v12’’ <- PolicyPCR(2, mA’’)
 // v12 = h (v11 || PolicyPCR || 2 || mA’’)
v13’’ <- PolicyCommandCode(RSA_Decrypt)
 //v13’’ = h (v12’’ || PolicyCommandCode || RSA_Decrypt)
v24 <- PolicyAuthorize (signature’’)
 // where signature’’ <- Sig_D(v13’’)
 // v24 = h (0 || PolicyAuthorize || PK_D)
 RSA_Decrypt(k1, c)

PK_D/SK_D

Allow any app by D

93

policySession
policyDigest

Example 2’

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA’’

k1 : private decryption key RSA_Decrypt (k1, c)

Command sequence

v11 <- PolicyPCR(2, mA’’)
 // v11 = h (0 || PolicyPCR || 2 || mA)
v12 <- PolicyAuthorize (signature’’)
 // where signature’’ <- Sig_D(v11’’)
 // v12 = h (0 || PolicyAuthorize || PK_D)
v13 <- PolicyPCR(1, mOS)
 // v13 = h (v12 || PolicyPCR || 1 || mOS)
v14 <- PolicyCommandCode(RSA_Decrypt)
 //v14 = h (v14 || PolicyCommandCode || RSA_Decrypt)
RSA_Decrypt(k1, c)

PK_D/SK_D

But we don’t want to allow any
OS or any policyCommand!

Skip to Secure Boot example

More Examples

• Example 3
– D wants to license the use of k1 to any app of

another developer D1
– D1’s app signing keypair PK_D1/SK_D1

• Example 4
– D wants to license use of k1 to any app of any

developer that he later authorizes!

Skip to Secure Boot example

Example 3

• D wants to license the use of k1 to any app of
another developer D1
– D1’s app signing keypair PK_D1/SK_D1

96

policySession
policyDigest

Example 3

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA1

k1 : private decryption key RSA_Decrypt (k1, c)

PK_D/SK_D
PK_D1/SK_D1

Command sequence

RSA_Decrypt(k1, c)

Allow any app by D or D1

? (must be independent of PCR 2 value; must allow
either public key to policyAuthorize PCR 2 value)

98

policySession
policyDigest

Example 3

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA

k1: private decryption key RSA_Decrypt (k1, c)

Command sequence

v31 <- PolicyPCR(2, mA)
 // v31 = h (0 || PolicyPCR || 2 || mA)
v32 <- PolicyAuthorize (signature)
 // where signature <- Sig_D(v31)
 // v32 = h (0 || PolicyAuthorize || PK_D1)
v33 <- PolicyOR ({v32, v32’})
 // v33 = h (0 || PolicyOR || v32 || v12)
v34 <- PolicyPCR(1, mOS)
 // v34 = h (v33 || PolicyPCR || 1 || mOS)
v35 <- PolicyCommandCode(RSA_Decrypt)
 // v35 = h (v34 || PolicyCommandCode || RSA_Decrypt)
RSA_Decrypt(k1, c)

PK_D/SK_D
PK_D1/SK_D1

Allow any app by D or D1

Example 4

• D wants to license use of k1 to any app of any
developer that he later authorizes!

100

policySession
policyDigest

Example 4

TPM2

Object (e.g. key)

System

System
state info

Object invocation
(”policy command”)

Object authorization

Other
TPM objs

authPolicy

PCR 1: mOS

PCR 2: mA’

k1 : private decryption key RSA_Decrypt (k1, c)

PK_D/SK_D

Command sequence

RSA_Decrypt(k1, c)

Allow any app certified by any
developer authorized by D

? (must be independent of PCR 2 value; independent of
public key used to authorize PCR 2 value)

PK_D’/SK_D’
policyAuthorize

Example policy: Simple Secure Boot

• Suppose PCR 2 has value mA when Platform A kernel loaded

• Sequence of commands to ensure secure boot
– [PCRExtend(2, measurement value); Start new authorization session]
– V1 <- PolicyPCR (2, mA)
– V2 <- PolicyCommandCode (PCRExtend)
 PCRExtend(5, mA)

• authPolicy for PCR 5 is V2

– V1 = h (0 || PolicyPCR || 2 || mA)
– V2 = h (V1 || PolicyCommandCode || PCR_Extend)

Platform A kernel

measurement mA PCR 2
Continue boot only if
Platform A kernel has
been loaded

measurement mA PCR5

IF
Object invocation for

authorization

Skip to Standards Summary

102

Simple secure boot not always enough

Secure boot can have the following properties

A) Extend to start up of applications

B) Include platform-dependent policy

C) Include optional or complementary boot branches

D) Order in which components are booted may matter

Skip to Standards Summary

103

1. Root-of-Trust-for-Measurement starts Boot Loader and boot process
2. It loads the TEE and TPM (PCR 1)
3. It loads the REE OS (PCR 2)
4. We want to verify loading of the OS TEE driver (PCR 3)

Authorization policy conditional to correct execution of previous steps

Advanced Secure Boot example

Isolation
boundary TEE

Trusted Operating
System

OS

Application

REE

TEE Driver
Load
driver?

Authorizing
entity

TPM 2

Skip to Standards Summary

104

Advanced Boot: example policy

Isolation
boundary TEE

Trusted Operating
System

OS

Application

REE

TEE Driver

TPM 2

PCR5: X | 00…00

• Policy applies to extending of PCR5 (authPolicy = X)
• Create policy session with policyDigest = X

Initial value authPolicy

Skip to Standards Summary

105

OS TEE driver will be
measured and launched

Advanced Boot Policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

External signature

measurementPCR 2

measurementPCR 2

measurement PCR5

IF

Rollback protection...

AND

Assumptions

AND

Policy applies only
to PCR update

Driver supplier can
change policy later

TEE OS driver loaded

measurementPCR 3

AND

TEE succesfully loaded

measurementPCR 1

Skip to Standards Summary

106

• authPolicy X = (PK_A)*

• driver supplier A can authorize any value Y as policy for PCR 5

* more precisely H(0 || PolicyAuthorize || PK_A || …)

PK_A

PolicyDigest

PolicyAuthorize

SK_A

X=H(PK_A)

Y

Y

Advanced Boot Policy

Y PolicyAuthorize(SigA(Y)) X

TEE
TPM2

PCR5 X 00000 eventually compare..

107

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

measurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

AND

Y PolicyAuthorize(SigA (Y)) X

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

108

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

MeasurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

TEE successfully loaded

AND

Y PolicyAuthorize(SigA (Y)) X

make sure PCRExtend is used
(not, e.g., PCRReset)

 PolicyCommandCode
 or
 PolicyCPHash

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

109

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

MeasurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

AND

Z PolicyCommandCode(PCRExtend)Y PolicyAuthorize(SigA(Y)) X
{Check: Eventual command == PCRExtend}

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

110

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

MeasurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

AND

Z PolicyCommandCode(PCRExtend)Y PolicyAuthorize(SigA(Y)) X
{Check: Eventual command == PCRExtend}

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

To bind a PCR value:

 PolicyPCR (index(3), value(expected meas.))

111

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

MeasurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

AND

Z PolicyCommandCode(PCRExtend)Y PolicyAuthorize(SigA(Y)) X
{Check: Eventual command == PCRExtend}

W PolicyPCR(3, meas.) Z

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

112

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

MeasurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

AND

Z PolicyCommandCode(PCRExtend)Y PolicyAuthorize(SigA(Y)) X
{Check: Eventual command == PCRExtend}

W PolicyPCR(3, meas.) Z

We want to support two OS variants based on a PCR2 value:

 PolicyOR ({V1, V2})

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

113

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

MeasurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

AND

Z PolicyCommandCode(PCRExtend)Y PolicyAuthorize(SigA(Y)) X
{Check: Eventual command == PCRExtend}

PolicyOr({V1,V2}) W PolicyPCR(3, meas.) Z V1
V2

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

114

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

MeasurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

AND

Z PolicyCommandCode(PCRExtend)Y PolicyAuthorize(SigA(Y)) X
{Check: Eventual command == PCRExtend}

PolicyOr({V1,V2} W PolicyPCR(3, meas.) Z V1
V2

Provider of OSB may do certified or authenticated boot. Thus:

Possibly more authorizations needed (e.g., PolicyNV)

 or

OSB provider updates PCR2 with result of some PolicyAuthorize(SigB(...))

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

115

Example policy

Platform A kernel

Platform B kernel

OR CTR5 > 2

AND

Ext.sign.

measurementPCR 2

MeasurementPCR 2

OS driver for TEE
will be measured and
launched

measurement PCR5

IF

Rollback protection ..

AND

Assumptions

AND

Policy applies only
to PCR updates

Driver supplier can
change policy later

AND

Z PolicyCommandCode(PCRExtend)Y PolicyAuthorize(SigA(Y)) X
{Check: Eventual command == PCRExtend}

PolicyOr({V1,V2} W PolicyPCR(3, meas.) Z V1
V2

PolicyPCR(3, H(...))
PolicyPCR(3, H(...))

TEE OS driver loaded

measurementPCR 3

TEE succesfully loaded

measurementPCR 1

116

Assume PCR2 will have value mB if a kernel authorized by provider B
(such as platform B kernel was booted, and PCR1 will have mN if
the correct TEE dríver N was loaded

‹ V1 <- PolicyPCR (2, mB)

‹ W <- PolicyOR ({V1, V2})

‹ Z <- PolicyPCR (1, mN)

‹ Y <- PolicyCommandCode (PCRExtend)

‹ X <- PolicyAuthorize (sig), where sig = Sig_A (Y)

PCRExtend(5, measurement value)

authPolicy for PCR5 is X

Sequence of TPM commands (1/2)

117

V1 = h (0 || PolicyPCR || 2 || mB)

W = h(0 || PolicyOR || (V1 || V2))

Z = h (W || PolicyPCR || 1 || mN)

Y = h (Z || PolicyCommandCode || PCR_Extend)

X = h (0 || PolicyAuthorize || PK_A)

Sequence of TPM commands (2/2)

Standards summary

• Global Platform Mobile TEE specifications
– Sufficient foundation to build trusted apps for mobile devices

• TPM 2.0 library specification
– TEE interface for various devices (also Mobile Architecture)
– Extended Authorization model is (too?) powerful and expressive

• Mobile deployments can combine UEFI, NIST, GP and TCG
standards

• Developers do not yet have full access to TEE functionality

A LOOK AHEAD

Challenges ahead and summary

120

Open issues and research directions

1. Novel mobile TEE architectures

2. Issues of more open deployment

3. Trustworthy TEE user interaction

4. Hardware security and user privacy

Skip to Summary

121

Novel mobile TEE architectures

• Multiple cores?
• Low-cost alternatives?

122

TEE architectures for multi-core

• Issues to resolve
– Possible to have separate TEEs for each core?
– Can other cores run REE, while TEE active on one?

• SICE
– Architecture for x86
– Assigns one or more cores for each TEE
– Other cores can run REE simultaneously
– Azab et al. SICE: A Hardware-Level Strongly Isolated Computing

Environment for x86 Multi-core Platforms. CCS’11.

123

Low-cost mobile TEE architectures

• Can mobile TEEs made cheaper?
– Low-end phones and embedded mobile devices

• TrustLite

– Execution aware memory protection
– Modified CPU exception engine for interrupt handling
– Koeberl et al. TrustLite: A Security Architecture for Tiny Embedded

Devices. EuroSys’14.

• SMART
– Attestation and isolated execution at minimal hardware cost
– Custom access control enforcement on memory bus
– Defrawy et al. SMART: Secure and Minimal Architecture for (Establishing

Dynamic) Root of Trust. NDSS’12.

Issues of open deployment

• Certification and liability issues?
– Especially application domains like payments

• Credential lifecycle management
– Device migration becomes more challenging in open model
– Hybrid approach: open provisioning and centralized assisting entity
– Kostiainen et al. Towards User-Friendly Credential Transfer on Open Credential

Platforms. ACNS’11.

User device

Service provider Service provider

Trusted authority

125

Trustworthy user interaction

• Trustworthy user interaction needed
– Provisioning
– User authentication
– Transaction confirmation

• Technical implementation possible

• But how does the user know?

– Am I interacting with REE or TEE?
TEE entry

App

Mobile OS

REE

App

Trusted OS

Truste
d app

Truste
d app

TEE

Smartphone hardware

128

Hardware security and user privacy?

• Secure boot can be used to limit user choice
– Common issue of mechanism vs. policy

• Allows new opportunities for attackers

– Vulnerabilities in TEE implementation → rootkits
– Thomas Roth. Next Generation rootkits. Hack in Paris

2013.

https://www.hackinparis.com/sites/hackinparis.com/files/Slidesthomasroth.pdf

129

Summary

• Hardware-based TEEs are widely deployed on mobile devices
– But access to application developers has been limited

• TEE functionality and interfaces are being standardized

– Might help developer access
– Global Platform TEE architecture
– TPM 2.0 Extended Authorization and Mobile Architecture

• Open research problems remain

Further reading

• Mobile Trusted Computing. Proceedings of the IEEE 102(8):
1189-1206 (2014)

• The Untapped Potential of Trusted Execution Environments
on Mobile Devices. IEEE Security & Privacy Magazine
12(4):29-37 (2014)

• Citizen Electronic Identities using TPM 2.0, To appear in ACM
CCS TrustED workshop (2014) (arXiv:1409.1023)

Slides of this talk: http://asokan.org/asokan/TCE2014
Contact info: http://asokan.org/asokan/

http://dx.doi.org/10.1109/JPROC.2014.2332007
http://www.informatik.uni-trier.de/%7Eley/db/journals/pieee/pieee102.html%23AsokanEKRRSSW14
http://dx.doi.org/10.1109/MSP.2014.38
http://dx.doi.org/10.1109/MSP.2014.38
http://arxiv.org/abs/1409.1023
http://asokan.org/asokan/TCE2014
http://asokan.org/asokan/

	Mobile Platform Security�Trusted Execution Environments
	What is a TEE?
	Outline
	A look back
	Platform security for mobile devices
	Early adoption of platform security
	Historical perspective
	Mobile Hardware security
	Slide Number 10
	Secure boot vs. authenticated boot
	Platform integrity
	Secure storage
	Isolated execution
	Device identification
	Device authentication (and remote attestation)
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	TrustZone example (1/2)
	TrustZone example (2/2)
	Mobile TEE deployment
	Application development
	Slide Number 26
	Slide Number 27
	Example Android Key Store implementation
	Slide Number 29
	Slide Number 30
	On-board Credentials (ObC) architecture
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Attestation protocol
	Example application: Public transport ticketing
	Transport ticketing protocol
	Application development summary
	Standardization
	TEE standards and specifications
	UEfi
	UEFI –boot principle
	UEFI – secure boot
	UEFI secure boot
	NIST
	Guidelines on Hardware-Rooted�Security in Mobile Devices (SP800-164, draft)
	Roots of Trust (RoTs)
	Root of Trust mapping
	Global Platform
	Global Platform (GP)
	GP TEE System Architecture
	Interaction with Trusted Application
	TEE Client API example
	TEE Internal API example
	Slide Number 57
	Trusted User Interface API
	Global Platform User-centric provisioning
	GP standards summary
	Trusted Computing Group�
	Trusted Platform Module (TPM)
	Platform Configuration Registers (PCRs)
	Use of platform measurements (1/2)
	Use of platform measurements (2/2)
	TPM Mobile (Mobile Trusted Module)
	RIM Certificate
	TPM 2.0
	TPM 2.0 Mobile Reference Architecture
	Authorization (policy) in TPM 1.2
	TPM 2.0
	Authorization (policy) in TPM 2.0
	An Example
	TPM2 Policy Session Contents
	TPM2 Policy Command Examples
	TPM2 Deferred Policy Example
	Policy disjunction
	Policy conjunction
	External Authorization
	Let’s try this out: example 1
	Example 1
	Example 2
	Example 2
	Example 2
	Example 2
	Example 2’
	Example 2’
	Example 2’
	Example 2’
	More Examples
	Example 3
	Example 3
	Example 3
	Example 4
	Example 4
	Example policy: Simple Secure Boot
	Simple secure boot not always enough
	Advanced Secure Boot example
	Advanced Boot: example policy
	Advanced Boot Policy
	Advanced Boot Policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Sequence of TPM commands (1/2)
	Sequence of TPM commands (2/2)
	Standards summary
	A look ahead�
	Open issues and research directions
	Novel mobile TEE architectures
	TEE architectures for multi-core
	Low-cost mobile TEE architectures
	Slide Number 124
	Trustworthy user interaction
	Hardware security and user privacy?
	Summary
	Further reading

