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Model theft is an important concern

Machine learning models: business advantage and intellectual property (IP)

Cost of
• gathering relevant data
• labeling data
• expertise required to choose the right model training method
• resources expended in training

Adversary who steals the model can avoid these costs

Motivation
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Defending against model theft

We can try to:
• prevent (or slow down) model theft, including model extraction or
• detect it

But appears to be infeasible against strong but realistic adversaries[1]

Or deter the attacker by providing the means for model ownership resolution (MOR):
• fingerprinting
• watermarking

promising but many MOR schemes so far have various caveats and vulnerabilities[2,3,4]

[1] Atli et al. - Extraction of Complex DNN Models: Real Threat or Boogeyman? AAAI-EDSML 2020 (https://arxiv.org/abs/1910.05429) 
[2] Lukas et al. – Sok: How Robust is Image Classification Deep Neural Network Watermarking? IEEE S&P 2022 (https://arxiv.org/abs/2108.04974)
[3] Shafieinejad et al. - On the Robustness of Backdoor-based Watermarking Schemes, IHMS 2021 (https://arxiv.org/abs/1906.07745)
[4] Szyller et al. – On the Robustness of Dataset Inference (https://arxiv.org/abs/2210.13631)

Motivation

https://arxiv.org/abs/1910.05429
https://arxiv.org/abs/2108.04974
https://arxiv.org/abs/1906.07745
https://arxiv.org/abs/2210.13631
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MOR generalization

Claim generation:
• model owner (potential accuser) generates “model ownership claim” (MOC)

- includes trigger sets: e.g., watermarks or fingerprints
- stolen vs. independent models likely to behave differently on input from trigger set
- obtains a secure timestamp on trigger set (+ model + other data) commitment

Claim verification:
• accuser initiates MOR against a suspect by sending MOC to a judge
• judge verifies timestamped MOC + interacts with both models to resolve ownership

- decides if suspect has stolen accuser’s model

Generalization
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MOR process

time

Model training

t1 t2

Trigger set generation

t3

Timestamped
commitment

Suspect model online Dispute initiation

t4 t5

Dispute and verification:
Judge verifies accuser's commitment,
checks MOC against suspect's model

Generalization
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Robustness of MOR schemes

MOR schemes must be robust against two types of attackers.

Malicious suspect:
• tries to evade verification
• common approaches: pruning, fine-tuning, noising

Malicious accuser:
• tries to frame an independent model owner
• timestamping commitments (of trigger set etc.) is the only defense in prior work

So far, research has focused on malicious suspects

Generalization
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False claims against MOR schemes

We show how malicious accusers can make false claims against independent models:
• adversary deviates from claim generation procedure (e.g., via transferrable adversarial examples)
• but still subject to specified verification procedure

Our contributions:
• formalize the notion of false claims against MOR schemes
• provide a generalization of MOR schemes
• demonstrate effective false claim attacks
• discuss potential countermeasures
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MOR instantiations

Watermarking:
• watermarking by backdooring[3]

• out-of-distribution backdoor embedded during training
• adversarial watermarking[4]

• flip labels for a subset of queries during inference, designed to deter model extraction

11

Fingerprinting:
• model fingerprinting[5]

• conferrable adversarial examples, transfer only to stolen models
• Dataset Inference[6]

• stolen models likely to have similar decision boundaries

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, USENIX 2018 (https://arxiv.org/abs/1802.04633)
[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)
[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples, ICLR 2021 (https://arxiv.org/abs/1912.00888)
[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

Generalization

https://arxiv.org/abs/1802.04633
https://arxiv.org/abs/1906.00830
https://arxiv.org/abs/1912.00888
https://arxiv.org/abs/2104.10706
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Watermarking by backdooring[3]

Claim generation:
• choose some out-of-distribution samples as watermark

- assign incorrect labels
• train using the watermark alongside your normal training data (or finetune)

- model memorizes watermark
• obtain timestamp on commitment of model and watermark

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, USENIX 2018 (https://arxiv.org/abs/1802.04633)

Generalization

https://arxiv.org/abs/1802.04633
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Watermarking by backdooring[3]: verification

Claim verification:
• query suspect model using watermark
• compare predictions to the assigned (incorrect) labels:

- many matching / high WM accuracy → stolen
- a few matching / low WM accuracy → not stolen

• check commitment and timestamp

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, USENIX 2018 (https://arxiv.org/abs/1802.04633)

Generalization

https://arxiv.org/abs/1802.04633
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MOR process

time

Model training

t1 t2

Trigger set generation

t3

Timestamped
commitment

Suspect model online Dispute initiation

t4 t5

Dispute and verification:
Judge verifies accuser's commitment,
checks MOC against suspect's model

Generalization
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DAWN[4]

Claim generation:
• clients submit queries
• pseudo-randomly select a fraction of queries as watermark (per-client)
• each watermark consists of pairs of inputs with pseudo-randomly flipped labels
• obtain timestamp on commitment of model and watermark
• adversary embeds watermark while training their surrogate models

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

Generalization

https://arxiv.org/abs/1906.00830
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DAWN[4]: verification

Claim verification:
• query suspect model using watermark
• compare predictions to flipped (incorrect) labels:

- many matching / high WM accuracy → stolen
- a few matching / low WM accuracy → not stolen

• check commitment and timestamp

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

Generalization

https://arxiv.org/abs/1906.00830
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Conferrable adversarial examples[5]

Claim generation:
• extract your own model many times: many surrogate models
• train many independent reference models
• generate conferrable adversarial examples:

- must transfer from your model to surrogate models
- must not transfer to reference models

• conferrable examples are the fingerprint
• obtain timestamp on commitment of model and fingerprint.

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples, ICLR 2021 (https://arxiv.org/abs/1912.00888)

Generalization

https://arxiv.org/abs/1912.00888
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Generalization
Conferrable adversarial examples[5]: verification

Claim verification:
• query suspect model using fingerprint
• compare suspect's predictions to the ground truth:

- suspect is fooled / gives incorrect prediction → stolen
- suspect is not fooled / gives correct predictions → not stolen

• check commitment and timestamp

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples, ICLR 2021 (https://arxiv.org/abs/1912.00888)

https://arxiv.org/abs/1912.00888
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Dataset Inference[6]

Claim generation:
• obtain embeddings for your private training data and public data (using your model),
• train a distinguisher using embeddings

- learns to identify models that use your training data vs those that do not
• outputs confidence scores to both sets of embeddings
• distributions of confidence scores must be distinguishable (hypothesis test)
• obtain timestamp on commitment of model and distinguisher+data

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

Generalization

https://arxiv.org/abs/2104.10706
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Dataset Inference[6]: verification

Claim verification:
• query suspect model to obtain embeddings
• get confidence scores using distinguisher
• compare distributions:

- distinguishable → stolen
- indistinguishable → not stolen

• check commitment and timestamp

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

Generalization

https://arxiv.org/abs/2104.10706
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Inducing successful false claims

Core idea: Accuser deviates from specified MOC generation procedure

For most schemes
• generate transferable adversarial examples and register them as false trigger set

For DI
• false positives occur naturally when training data distributions are similar[7]

• generate false “private” data that fits distribution of independent training data
• obtain timestamp on false private data and resulting false distinguisher

21
[7] Szyller et al. – On the Robustness of Dataset Inference (https://arxiv.org/abs/2210.13631)

False claims

https://arxiv.org/abs/2210.13631
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Watermarking by backdooring[3]

Claim generation:
• choose some out-of-distribution samples as watermark

- assigned with incorrect labels
• train using the watermark alongside your normal training data (or finetune)

- model memorizes watermark
• obtain timestamp on commitment of model and watermark

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, USENIX 2018 (https://arxiv.org/abs/1802.04633)

False claims

https://arxiv.org/abs/1802.04633
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Watermarking by backdooring[3]: false claim

Claim generation:
• choose some out-of-distribution samples as watermark

- assigned with incorrect labels
• train using the watermark alongside your normal training data (or finetune)

- model memorizes watermark
• obtain timestamp on commitment of model and watermark

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, USENIX 2018 (https://arxiv.org/abs/1802.04633)

False claims

https://arxiv.org/abs/1802.04633
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Watermarking by backdooring[3]: false claim

False claim generation:
• choose some out-of-distribution samples as false watermark

• perturb these samples to craft transferable adversarial examples

• obtain timestamp on commitment of model and false watermark

[3] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, USENIX 2018 (https://arxiv.org/abs/1802.04633)

False claims

https://arxiv.org/abs/1802.04633
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DAWN[4]

Claim generation:
• clients submit queries
• pseudo-randomly select a fraction of queries as watermark (per-client)
• each watermark consists of pairs of inputs with pseudo-randomly flipped labels
• obtain timestamp on commitment of model and watermark
• adversary embeds watermark while training their surrogate models

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

False claims

https://arxiv.org/abs/1906.00830
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DAWN[4]: false claim

Claim generation:
• clients submit queries
• pseudo-randomly select a fraction of queries as watermark (per-client)
• each watermark consists of pairs of inputs with pseudo-randomly flipped labels
• obtain timestamp on commitment of model and watermark
• adversary embeds the watermark while training their surrogate models

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

False claims

https://arxiv.org/abs/1906.00830
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DAWN[4]: false claim

False claim generation:
• clients submit queries
• pseudo-randomly select a fraction of the queries for the false watermark

• perturb each chosen query to craft targeted transferable adversarial examples
- labels need to match the pseudo-random flip

• obtain timestamp on commitment of model and false watermark

[4] Szyller et al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM 2021 (https://arxiv.org/abs/1906.00830)

False claims

https://arxiv.org/abs/1906.00830
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Conferrable adversarial examples[5]

Claim generation:
• extract your own model many times: many surrogate models
• train many reference models
• generate conferrable adversarial examples:

- must transfer from your model to surrogate models
- must not transfer to reference models

• conferrable examples are the fingerprint
• obtain timestamp on commitment of model and fingerprint

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples, ICLR 2021 (https://arxiv.org/abs/1912.00888)

False claims

https://arxiv.org/abs/1912.00888
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False claims
Conferrable adversarial examples[5]: false claim

Claim generation:
• extract your own model many times: many surrogate models
• train many reference models
• generate conferrable adversarial examples:

- must transfer from your model to surrogate models
- must not transfer to reference models

• conferrable examples are the fingerprint
• obtain timestamp on commitment of model and fingerprint

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples, ICLR 2021 (https://arxiv.org/abs/1912.00888)

https://arxiv.org/abs/1912.00888
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Conferrable adversarial examples[5]: false claim

False claim generation:
• (optional) extract your own model many times: to strengthen transferability

• ignore any reference models
• craft transferable adversarial examples
• transferable adversarial examples are the false fingerprint

• obtain timestamp on commitment of model and false fingerprint

[5] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples, ICLR 2021 (https://arxiv.org/abs/1912.00888)

False claims

https://arxiv.org/abs/1912.00888
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Dataset Inference[6]

Claim generation:
• obtain embeddings for your private training data and public data (using your model),
• train a distinguisher using embeddings

- learns to identify models that use your training data vs those that do not
- outputs confidence scores to both sets of embeddings

• distributions of confidence scores must be distinguishable (hypothesis test)
• obtain timestamp on commitment of model and distinguisher+data

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

False claims

https://arxiv.org/abs/2104.10706
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Dataset Inference[6]: false claim

Claim generation:
• obtain embeddings for your private training data and public data (using your model),
• train a distinguisher using embeddings

- learns to identify models that use your training data vs those that do not
- outputs confidence scores to both sets of embeddings

• distributions of confidence scores must be distinguishable (hypothesis test)
• obtain timestamp on commitment of model and distinguisher+data

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

False claims

https://arxiv.org/abs/2104.10706
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Dataset Inference[6]: false claim

False claim generation:
• obtain embeddings for public data (using your model)

• sample false “private” data, perturb to generate large prediction margins (on your model) 
(these will transfer to independent models)

• train a false distinguisher using both sets of embeddings (outputs fake confidence scores)
• distributions now distinguishable for all independent models (hypothesis test)

• obtain timestamp on commitment of model and false distinguisher+data

[6] Maini et al. – Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://arxiv.org/abs/2104.10706)

False claims

https://arxiv.org/abs/2104.10706
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Evaluation

Our attacks are effective:
• evaluated against Adi et al., DAWN, Lukas et al., DI

- using CIFAR10, ImageNet, CelebA (Amazon Rekognition API)
• also applicable to others that follow our generalization

Attack efficacy compared to three thresholds (T):
• independent: judge trains independent models and picks the highest T

- easy for false claims, difficult to evade detection
• extracted: judge derives extracted models and picks the lowest T

- easy to evade detection, difficult for false claims
• mixed: average of independent and extracted models

- realistic for actual deployments

[7] Szyller et al. – On the Robustness of Dataset Inference (https://arxiv.org/abs/2210.13631)

False claims

For DI, naturally occurring FPs[7] make “extracted” threshold > “mixed” threshold!

https://arxiv.org/abs/2210.13631
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Evaluation: CIFAR10

False claim accuracy:
• bold: higher than mixed T (realistic)
• underlined: higher than extracted T (difficult for false claims)

Backdooring DAWN Conferrable DI

T
independent 10.0 1.0 28.0 90.0
mixed 29.0 38.5 57.5 81.4
extracted 48.0 76.0 87.0 72.8

Suspect
MOR

accuracy

diff. arch. & diff. data 94.3 69.3 94.3 100.0
same arch. & diff. data 98.0 100.0 98.0 99.1
same arch. & same data 99.0 78.3 99.0 98.6

[7] Szyller et al. – On the Robustness of Dataset Inference (https://arxiv.org/abs/2210.13631)
For DI, naturally occurring FPs[7] lead to a different threshold order “extracted” < “mixed” < “independent”!

False claims

https://arxiv.org/abs/2210.13631
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Evaluation: ImageNet

False claim accuracy:
• bold: higher than mixed T (realistic)
• underlined: higher than extracted T (difficult for false claims)

Backdooring DAWN Conferrable DI

T
independent 15.0 3.0 14.0 76.5
mixed 23.5 42.5 30.0 69.6
extracted 32.0 82.0 46.0 62.6

Suspect
MOR

accuracy

diff. arch. & diff. data 72.6 87.6 72.6 100.0
same arch. & diff. data 93.7 97.0 93.7 100.0
same arch. & same data 84.6 89.0 84.6 100.0

[7] Szyller et al. – On the Robustness of Dataset Inference (https://arxiv.org/abs/2210.13631)
For DI, naturally occurring FPs[7] lead to a different threshold order “extracted” < “mixed” < “independent”!

False claims

https://arxiv.org/abs/2210.13631
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Evaluation: CelebA (Amazon Rekognition API)

False claim accuracy:
• bold: higher than mixed T (realistic)
• underlined: higher than extracted T (difficult for false claims)

Backdooring DAWN Conferrable DI

T
independent 25.7 7.0 21.0 20.0
mixed 42.4 26.0 28.5 14.1
extracted 59.0 45.0 36.0 8.2

Suspect
MOR

accuracy

diff. arch. & diff. data
(Amazon Rekognition API) 68.4 68.0 68.4 99.9

[7] Szyller et al. – On the Robustness of Dataset Inference (https://arxiv.org/abs/2210.13631)
For DI, naturally occurring FPs[7] lead to a different threshold order “extracted” < “mixed” < “independent”!

False Claims

https://arxiv.org/abs/2210.13631
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Countermeasures 1/4

False claims undermine confidence in all MOR schemes.
How to prevent them?

Approach 1: Judge-verified trigger sets I
• use verifiable computation (VC): ensure that trigger set was generated correctly
• does not capture watermark selection: false claims still possible
• applicable to fingerprinting schemes

- expensive: must include model training, otherwise still unsafe
- not applicable to DI: accuser can manipulate their training data

Countermeasures
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Countermeasures 2/4

False claims undermine confidence in all MOR schemes.
How to prevent them?

Approach 2: Judge-verified trigger sets II
• judge trains multiple independent models: rejects trigger sets that flag them as stolen
• effective for all schemes
• costly for judge: but amortizable, and rare (only when dispute arises)
• needs appropriate training data
• accuser can try to extract or evade the independent models

- each MOR invocation must be expensive to deter repeated attempts
- little impact on legitimate MOR invocations

Countermeasures



40

Countermeasures 3/4

False claims undermine confidence in all MOR schemes.
How to prevent them?

Approach 3: Judge-generated trigger sets
• judge generates all trigger sets: all subsequent claims must use these
• effective for several schemes

- not applicable to DAWN: clients choose their queries
- not applicable to DI: data/model can be manipulated before MOC generation

• judge becomes a bottleneck if judge must be involved even if there is no dispute
- for fingerprinting schemes trigger set generation can be deferred until dispute

Countermeasures
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Countermeasures 4/4

False claims undermine confidence in all MOR schemes.
How to prevent them?

Approach 4: defenses against transferable adversarial examples
• adversarial training: likely effective but can incur accuracy loss
• adversarial purification: expensive and too slow for real-time prediction
• detection of adversarial examples (e.g., by judge): open research problem

Approach 5 (DAWN-only): signing queries
• require all clients to sign their queries
• judge verifies that queries were not manipulated
• effective if clients do not collude with accuser (clients can be punished for stolen models)

Countermeasures
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Model theft is an important concern.

MOR schemes have varying degree of robustness

All current MOR schemes are vulnerable to false claims:
- possible to accuse/frame independent model owners

Countermeasures may be costly

Do efficient scheme-specific countermeasures exist?

Conclusion

More on our security + ML research at: https://ssg.aalto.fi/research/projects/mlsec/model-extraction/
Zhang, Liu, Szyller, Ren, Asokan – False Claims Against Model Ownership Resolution (https://arxiv.org/abs/2304.06607)

https://ssg.aalto.fi/research/projects/mlsec/model-extraction/
https://arxiv.org/abs/2304.06607
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Backup slides

44
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False positives in DI: empirical evaluation

All empirical evaluation [1] was done using non-linear models.
The original split for CIFAR10 uses:

• training set for teacher model
• test set to train independent model (used for evaluating DI distinguisher)
• but test set (and training set) are used to train distinguisher (double-dip on the test set)

We revisited the empirical analysis to rectify this:
• We split CIFAR10 training set into two non-overlapping chunks (A and B):

• one for teacher (A), one for independent model (B)
• test and A set are used for distinguisher
• independent model B triggers a FP with high confidence

Model trained on: ϕDI

A (teacher) 10-18 ± 10-18

Test (original) 0.46 ± 0.04

B (independent) 10-8 ± 10-8

[1] Maini et al. - Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://openreview.net/forum?id=hvdKKV2yt7T)

https://openreview.net/forum?id=hvdKKV2yt7T
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False positives in DI: theoretical analysis

But theoretical analysis [1] of DI was done for linear models only.
We revisited the theoretical analysis as well.

For linear models, our analysis shows that:
- false positives are more probable than in their original analysis (in certain cases)

- require revealing substantially more data to resolve

For non-linear models, our analysis shows that:
- false positives exist with probability 0.5

[1] Maini et al. - Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://openreview.net/forum?id=hvdKKV2yt7T)
k = # verification samples, m = size of training set

(k/m)

https://openreview.net/forum?id=hvdKKV2yt7T
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False positives in DI: linear model analysis
Setup: data consists of input-label pairs <x, y>
x has a signal component x1 (dim: K) and a noise component x2 (dim: D)
x1 results from y modulating a fixed vector u. x2 is Gaussian (Ν) with variance σ
DI assumes that D is large.

Consider a subspace with a large σ for Ν: D should be small to ensure utility (lemma)

But when D is small, avoiding FPs requires revealing more data (high k) (theorem)

General Membership Inference DI
Required # of verif. samples k k=1 k=m
Target FPR ~ 0.5 ~ 0



48

False positives in DI: non-linear model analysis

Bound for expected loss and empirical loss in PAC-Bayes framework :​

Bound for margin:​

Non-Linear models: False positives occur when 
Margin p(f, x) is the same as loss function:

FPs likely when suspect model’s and victim model’s training data have the same distribution
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False negatives in DI: empirical evaluation

DI relies on noisy queries to identify decision boundaries.
Can adversary avoid detection?
• Regularise model’s decision boundaries using adversarial training

• during training replace each clean sample with an adversarial example

• Adversarial training results in a false negative:
• p-value similar to an independent model
• accuracy drop of ~6pp (0.93 ± 0.01 to 0.87 ± 0.02)

Model trained on: ϕDI

Teacher 10-21 ± 10-16

Test 0.46 ± 0.035

Adversarial 0.15 ± 0.07
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Challenging the Private Data Assumption

DI relies on private data:
- it requires revealing it to verify ownership
- in the worst case (adversarial training), victim can reveal a lot and still fail
- cryptographic protocols for oblivious inference could be a solution but:

- slow/expensive and harder to deploy (all potential suspects must implement the protocols)

Also, DI relies on unique training data:
- reasonable in many domains
- but difficult to guarantee in others, e.g., local insurance companies
- can lead to false accusations
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Ownership Verification of ML Models

Each ownership verification method has its own strengths/shortcomings

Ownership 
verification of 
ML models

WATERMARKING
• White box theft
• Model stealing

Easy to deploy but brittle

OTHER FINGERPRINTING
• Conferrable adv. examples[2]

• Passport layers[3]

More robust than watermarking 
but hard to deploy

DATASET INFERENCE[1]

More robust than watermarking 
but (i) risks FPs, FNs and          
(ii) collides with privacy

[1] Maini et al. - Dataset Inference: Ownership Resolution in Machine Learning, ICLR 2021 (https://openreview.net/forum?id=hvdKKV2yt7T)
[2] Lukas et al. - Deep Neural Network Fingerprinting By Conferrable Adversarial Examples, ICLR 2021 (https://openreview.net/forum?id=VqzVhqxkjH1)
[3] Lixin et al. - Rethinking Deep Neural Network Ownership Verification: Embedding Passports to Defeat Ambiguity Attacks, NeurIPS 2019 (https://arxiv.org/abs/1909.07830)

https://openreview.net/forum?id=hvdKKV2yt7T
https://openreview.net/forum?id=VqzVhqxkjH1
https://arxiv.org/abs/1909.07830
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