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Outline

Off-the-Hook: a client-side phishing detection technique

Lessons learned 
• Pitfalls in applying machine learning to security/privacy problems
• Ways of avoiding pitfalls
• (From the perspective of system security experts)
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Phishing webpages

Phishing webpage (phish) Legitimate webpage
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State of the art in phishing detection

Centralized black lists
• vulnerability to “dynamic phishing”: content depends on client
• Update time lag
• threat to user privacy

Application of machine learning
• may not have “temporal resilience”: accuracy degrading with time

…
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Data sources on a webpage

Starting URL
Landing URL
Redirection chain
Logged links
HTML source code:
• Text
• Title
• HREF links
• Copyright
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Phisher’s control & constraints

Data sources differ in terms of the levels of
• control the phisher has over a source
• constraints placed on the phisher in manipulating that source
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URL Structure

https://www.amazon.co.uk/ap/signin?_encoding=UTF8
• Protocol = https
• Registered domain name (RDN) = amazon.co.uk
• Main level domain (mld) = amazon
• FreeURL = {www, /ap/signin?_encoding=UTF8}

protocol://[subdomains.]mld.ps[/path][?query]

FreeURL
Registered

Domain Name FreeURL
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Phisher’s control & constraints

Control:
• External loaded content (logged links) and external HREF links 

are usually not controlled by page owner.

Constraints:
• Registered domain name part of URL cannot be freely defined: 

constrained by DNS registration policies. 
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Conjectures

Improve phish detection by modeling control/constraints
• generalizable, language independent, hard to circumvent

Identity target of phish by analyzing terms in data sources 
• guide users where they really intended to go
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Data sources: control & constraints

Unconstrained Constrained

Controlled Text
Title
Copyright
Internal FreeURL (2)

Internal RDNs (2)

Uncontrolled External FreeURL (2) External RDNs (2)
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Feature selection

A small set (212) of features computed from data sources:
• URL features (106): e.g., # of dots in FreeURL
• Consistency features (101)
• Webpage content (5): e.g., # of characters in Text

Features not data-driven: e.g., no bag-of-words features
• Conjecture: can lead to language-independence, temporal resilience
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Consistency features

Term usage (66)
• strings of 3 or more characters, separated by standard delimiters

“Main level domain” (mld) usage in starting/landing URLs (22)

“Registered domain name” usage (RDN) (13)
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Term usage consistency

Dtitle = 
{(log,0.25);(your,0.25);(paypal,0.25);(account,0.25)}

Title: “Log in to your PayPal account” RDN: paypal.com

Dstartrdn = 
{(paypal,1)}

f = H(Dtitle , Dstartrdn) =
0.25 + 0.25 + ( 0.25 − 1)2+ 0.25

2
= 0.71

Hellinger distance
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Classification
Decision trees:

• Easier understanding of the decision process (intelligibility)
• Ability to learn from little training data
• Good performance with a small feature set
• No need for data normalization 

Gradient Boosting (ensemble learning):
• Resilient to adversarial inference of model parameters
• Likelihood to belong to a class (score from individual learners) // no 

hard decision (good for tuning the decision)

Fast decision
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Target identification

Identify terms representing the service/brand: keyterms
Assumption: keyterms appear in several data sources

Query search engine with top keyterms:
• Website appears in top search results → legitimate
• Else, phish; top search results ~ potential targets of phishing

Intersect sets of terms extracted from different 
visible data sources (title, text, starting/landing 
URL, Copyright, HREF links)
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Off-the-Hook anti-phishing system
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Off-the-Hook browser add-on

Client-side implementation
• Preserves user privacy
• Resists dynamic phishing

Multi-browser / Cross platform
• Chrome*, Firefox
• Windows (>= 8), Mac OSX (>= 10.8), Ubuntu (>= 12.04)
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Off-the-Hook warning
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Evaluation

Classifier Training: 
• 8,500 legitimate webpages (English)
• 1,500 phishing webpages (taken from PhishTank & manually verified)

Evaluation:
• Legitimate webpages:

- 100,000 English
- 20,000 each in French, German, Italian, Portuguese and Spanish

• 2,000 phishing webpages (PhishTank; manually verified)
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Classification accuracy

ROC Curve Precision vs. Recall

200,000 multi-lingual legit
/ 2,000 phishs

(≈ real world distribution)

Precision Recall FP Rate AUC Accuracy
0.975 0.951 0.0008 0.999 0.999
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Classification accuracy over time

Model trained:
• September 2015

Applied on phishs:
• January – June 2016
• ~2500 fresh, verified 

phishtank entries 
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Performance

Small memory footprint: 295 MB

Minimal impact on web surfing
• Phishing webpages:

- Interaction blocked in < 0.2 second
- Warning displayed (and target identified) in < 2 seconds 

• Legitimate webpages:
- No perceptible impact (albeit false positives)
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Comparison: effectiveness

FPR Precision Recall Accuracy
Cantina (CMU) 0.03 0.212 0.89 0.969
Cantina+ (CMU) 0.013 0.964 0.955 0.97
Ma et al. (UCSD) 0.001 0.998 0.924 0.955
Whittaker et al. (Google) 0.0001 0.989 0.915 0.999
Monarch (UCB) 0.003 0.961 0.734 0.866
Off-the-Hook 0.0008 0.975 0.951 0.999

https://doi.org/10.1145/1242572.1242659
https://doi.org/10.1145/2019599.2019606
https://doi.org/10.1145/1557019.1557153
http://www.internetsociety.org/doc/large-scale-automatic-classification-phishing-pages
https://doi.org/10.1109/SP.2011.25
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Comparison: dataset sizes

Training Testing
Cantina (CMU) - 2,119
Cantina+ (CMU) 2062 884
Ma et al. (UCSD) 17,750 17,750
Whittaker et al. (Google) 9,388,395 1,516,076
Monarch (UCB) 750,000 250,000
Off-the-Hook 10,000 202,000

https://doi.org/10.1145/1242572.1242659
https://doi.org/10.1145/2019599.2019606
https://doi.org/10.1145/1557019.1557153
http://www.internetsociety.org/doc/large-scale-automatic-classification-phishing-pages
https://doi.org/10.1109/SP.2011.25
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Off-the-Hook summary

Off-the-Hook phishing website detection system:
• Exhibits language independence
• Resists dynamic phishing
• Fast:  < 0.5 second per webpage (average for all webpages)
• Accurate: > 99.9% accuracy with < 0.1% false positives

Target identification system:
• Fast: < 2 seconds per webpage
• Success rate: > 90% (1 target); 97.3% (set of three potential targets)

https://ssg.aalto.fi/projects/phishing/

[MSSA16] Know Your Phish: Novel Techniques for Detecting Phishing Sites and their Targets, ICDCS 2016
[AMA16] Real-Time Client-Side Phishing Prevention Add-On, ICDCS 2016
[MAGSSA17] Off-the-Hook: An Efficient and Usable Client-Side Phishing Prevention Application, (to appear) IEEE Trans. Comput., 2017

https://ssg.aalto.fi/projects/phishing/
https://doi.org/10.1109/ICDCS.2016.10
https://doi.org/10.1109/ICDCS.2016.44
http://ieeexplore.ieee.org/document/7926371/


Pitfalls in using ML 
for security
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Adversaries will circumvent detection

The ML model is intended to detect/counter attacks
Adversary will attempt to circumvent detection:

• poison learning process
• infer detection model
• mislead classifier

In Off-the-Hook:
• Modeling constraints and controls while training
• Adversary can control External RDNs! 

Resistance to adversaries
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Classification landscapes are dynamic

Attacks evolve fast
Prediction instances likely differ from training instances

• E.g., Android malware evolves due to for changes in API

In Off-the-Hook:
• Avoidance of data-driven features
• Models that allow inexpensive retraining

Temporal resilience
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Maintaining labels is expensive
More training data is good; but unbalanced classes typical
Data about malicious behavior difficult to obtain

• Labeling is cumbersome, requires expertise, may be inaccurate or may 
evolve (e.g. phishing URLs)

In Off-the-Hook:
• Manage with small training sets
• Minimize ratio of training set size to test size

Minimal training data
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Privacy concerns are multilateral
Data used for ML may be sensitive

• Sensitive information about users in
- training data → model inversion, membership inference
- prediction process → user profiling, e.g., in a cloud setting (ML-as-a-service)

In Off-the-Hook:
• Client-side classifier to avoid disclosure of URLs
• But model stealing may be a concern

Multilateral privacy guarantees
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Predictions need to be intelligible

Ability of humans to understand why a prediction occurs
• Detection as malicious → forensic analysis
• Explain predictions to users, e.g. why access is prevented
• “Explainability” obligations under privacy regulations like GDPR

In Off-the-Hook:
• Small set of “meaningful” features
• Use of (ensemble of) shallow decision trees

Transparent decision process
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ML failures can harm user experience
Security is usually a secondary goal
Use of ML must not negatively impact usability

• Decision process should be efficient
• Wrong predictions may have a significant usability cost 

In Off-the-Hook: 
• Prediction effectiveness and speed
• In phishing detection, one false positive may be one too much!

Lightweight and accurate
Skip to conclusions



34

Security/privacy applications: desiderata

Circumvention resistance
• Resistance to adversaries

Temporal resilience
• Resilience in dynamic environments

Minimality
• Use of minimal training data

Privacy
• Model privacy, training set privacy, and input/output privacy

Intelligibility
• Transparent decision process

Effectiveness
• Lightweight, accurate models Skip to conclusions

Skip to PETS



On avoiding pitfalls

Skip to conclusions
Skip to PETS
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Model complexity
Complex, non-linear models can resist circumvention better

• Model inversion/stealing is
- easier with linear regression, decision tree, shallow NN
- harder with ensemble methods, deep NN

• But complex models tend to have poor
- intelligibility
- temporal resilience (retraining training time/data: e.g, kernel SVM, deep NN)

Apply Occam’s Razor
• opt for the simplest model possible

Skip to conclusions
Skip to PETS
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Model secrecy

Keeping model secret can help resist circumvention
• E.g., ML-as-a-service hides model from adversaries
• But naïve designs degrade input/output privacy of users

Adapt ML analogue of Kerchoff’s desideratum?
• Keep (only) model parameters secret
• Disclose only the ML algorithm

Skip to conclusions
Skip to PETS
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Feature selection

Carefully hand-crafted features can resist circumvention better
• But needs domain expertise and human input
• Automated selection: “effectiveness” not resistance to manipulation

Also can improve intelligibility and temporal resilience

Avoid data-driven feature selection (e.g., bag-of-words)

Skip to conclusions
Skip to PETS
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Dataset selection

Malicious

Benign

Selective sampling can harm 
temporal resilience

• Common mistake: lack of 
coverage in datasets, e.g.,

- Top 100 000 Alexa websites
- 10,000 most popular apps + Malware 

that contacts malicious domains

Use representative datasets

Skip to conclusions
Skip to PETS
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Evaluation approaches: datasets

Evaluation should mimic real-world usage
• Excellent academic results reportedly often fail in deployment

Use temporal separation: e.g., train on old data, test on new data
• Avoid cross-validation → can overestimate performance

Account for unbalanced class distribution
• E.g., Resampling during training, realistic distribution for testing

Skip to conclusions
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Privacy-enhancing technologies

Training set privacy
• Adversary during training → training with encrypted data
• Generic membership inference attacks → differential privacy

Model privacy
• Model extraction → complex models, diff. privacy, rate limiting

Input/output privacy for predictions
• Local models (but compromise model privacy)
• MLaaS : Hide inputs/outputs from server; model from client

• Trusted execution environments on servers (Intel SGX or other commercial TEEs)
• Oblivious ML predictions

Skip to conclusions
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Recommendations and good practice

Model selection
• Keep model secret & simple

Feature selection
• Opt for handcrafted vs. data-driven

Dataset selection
• Use representative datasets

Evaluation approaches
• Prefer temporal vs. cross-validation, use relevant metrics

Privacy-enhancing technologies
• Use local predictions, oblivious ML models, differential privacy
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What about Deep Learning?

Complex decision process
• Difficult to explain decisions (intelligibility)
• Difficult to reverse engineer (circumvention resistance)

Training is complex/expensive
• Requires large amount of training data (minimality)
• Relearning is costly (temporal resilience)

Automated “feature selection”
• Adversary can impact prediction by manipulating input 

(circumvention resistance)
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Summary

Off-the-Hook for effective phishing detection

Desiderata for using ML for security/privacy applications

Some thoughts on avoiding potential pitfalls

A little provocation!

https://ssg.aalto.fi/projects/phishing/

https://ssg.aalto.fi/projects/phishing/


45

Additional slides
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Feature selection
Rely on few features:

• Limited availability of training data (for some class at least)
• Good practice to generalize a phenomenon: 10x to 100x more 

training instances than features
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Feature minimality

Smaller set of features ensure minimality of model
• Recall: labeled training data is difficult to obtain/maintain
• Also helps intelligibility but can ease circumvention
• Good practice dictates 10x to 100x training instances
• Size of feature set and training set depend on complexity of 

phenomenon being modeled

Apply Occam’s Razor
• opt for the smallest feature set possible

Skip to PETS
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Evaluation – dataset usage 
Deal with unbalanced class problem for training

• Resample the class: under-sampling over-represented class 
• Generate synthetic example for the under-represented class (e.g. 

SMOTE)
• Use penalized models (e.g. penalized-SVM)

Represent real-world distribution for testing
• Anomalies << normal instances (e.g. phishs << legitimate websites)
• Preserve repartition for relevant accuracy results from evaluation
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Evaluation – metrics
Unbalanced class distribution impacts selection of metrics

• Accuracy, AUC, TP Rate, etc. can be high even for ineffective models

Example combination of metrics:

• Recall (TPrate) → detection capability:

• Precision → reliability / usability: FNTP
TPRecall
+

=
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