

Fast client-side phishing detection

A case-study in applying machine learning to solve security/privacy problems

N. Asokan (joint work with Samuel Marchal, Giovanni Armano, Kalle Saari, Tommi Gröndahl, Nidhi Singh, Mika Juuti)

Off-the-Hook: a client-side phishing detection technique

Lessons learned

- Pitfalls in applying machine learning to security/privacy problems
- Ways of avoiding pitfalls
- (From the perspective of system security experts)

Phishing webpages

Costing carry public and the second converting of the second conve	ofinityweberc C Q Q Search	togistaspotekojskal secoli ili	C Q. Stor	
	Email address Email address Datasenord Log In Forgot your email address or password? Sign Up		Email Easeword Log In Having trouble logging in? Stign Up	
Phis			gitimate web	
	in to your PayPal acco × •		Log in to your PayPal acc PayPal, Inc. (US) https://v	

State of the art in phishing detection

Centralized black lists

- vulnerability to "dynamic phishing": content depends on client
- Update time lag
- threat to user privacy

Application of machine learning

• may not have "temporal resilience": accuracy degrading with time

Data sources on a webpage

Standard Ba	nk	South Africa	No. Contraction		
4V			7 5 3.		
Internet banking		🔒 Login	Tuesday, 20 Oktober 2015 t	1:19:05 AM	
About Self-service Banking	>			Register	>
Internet Banking Logon	>	Card		Create PIN and Paseword	-
Functionality	<u>></u>			Reset Password and CSP	5
Accessibility settings	>	CSP O		Heset Password and CaP	<u> </u>
FAQs	>	Password O		Customer Care Lir	20
Costa	>	Change	CSP		11
About us	>		Password	South Africa 0860 123 000	
Contact us	>		Login	S International	
Electronic Banking Agreement	>	By logging on Lacknowledge	e that I have read, understood and am bound by the version of	+27 11 299 4701	
Auto Share Investment Agreement	>		ement that is posted on the website at the time of logging on.		
Privacy and security	>				

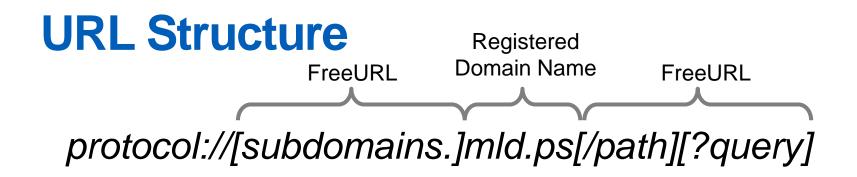
Starting URL Landing URL Redirection chain Logged links HTML source code:

- Text
- Title
- HREF links
- Copyright

Phisher's control & constraints

Data sources differ in terms of the levels of

- control the phisher has over a source
- constraints placed on the phisher in manipulating that source



https://www.amazon.co.uk/ap/signin?_encoding=UTF8

- Protocol = *https*
- Registered domain name (RDN) = *amazon.co.uk*
- Main level domain (*mld*) = amazon
- FreeURL = {www, /ap/signin?_encoding=UTF8}

Phisher's control & constraints

Control:

• External loaded content (logged links) and external HREF links are usually not controlled by page owner.

Constraints:

 Registered domain name part of URL cannot be freely defined: constrained by DNS registration policies.

Improve phish detection by modeling control/constraints

• generalizable, language independent, hard to circumvent

Identity target of phish by analyzing terms in data sources

• guide users where they really intended to go

Data sources: control & constraints

	Unconstrained	Constrained
Controlled	Text Title Copyright Internal <i>FreeURL (2)</i>	Internal <i>RDN</i> s (2)
Uncontrolled	External FreeURL (2)	External <i>RDN</i> s (2)

Feature selection

A small set (212) of features computed from data sources:

- URL features (106): e.g., # of dots in FreeURL
- Consistency features (101)
- Webpage content (5): e.g., # of characters in Text

Features not data-driven: e.g., no bag-of-words features

• Conjecture: can lead to language-independence, temporal resilience

Consistency features

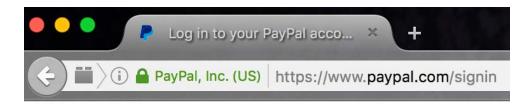
Term usage (66)

• strings of 3 or more characters, separated by standard delimiters

"Main level domain" (mld) usage in starting/landing URLs (22)

"Registered domain name" usage (RDN) (13)

Term usage consistency



Title: "Log in to your PayPal account"

RDN: paypal.com

$$D_{title} = D_{startrdn} = \{(\log, 0.25); (your, 0.25); (paypal, 0.25); (account, 0.25)\}$$
 {(paypal, 1)}

Hellinger distance

$$f = H(D_{title}, D_{startrdn}) = \frac{\sqrt{0.25 + 0.25 + (\sqrt{0.25} - \sqrt{1})^2 + 0.25}}{\sqrt{2}} = 0.71$$

Classification

Decision trees:

- Easier understanding of the decision process (intelligibility)
- Ability to learn from little training data
- Good performance with a small feature set
- No need for data normalization

Gradient Boosting (ensemble learning):

- Resilient to adversarial inference of model parameters
- Likelihood to belong to a class (score from individual learners) // no hard decision (good for tuning the decision)

Target identification

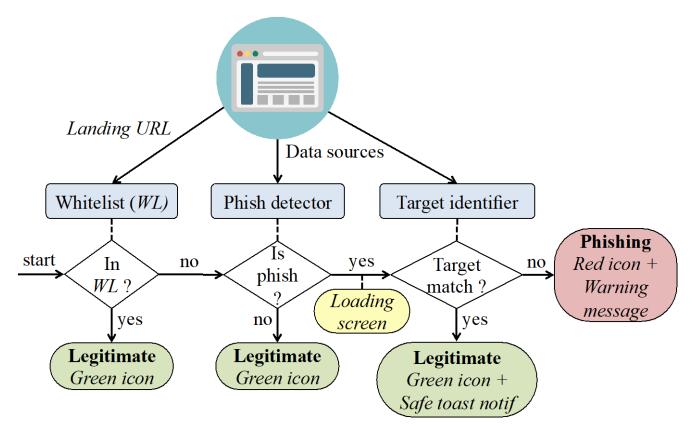
Identify terms representing the service/brand: keyterms Assumption: keyterms appear in several data sources

➡ Intersect sets of terms extracted from different
 ➡ visible data sources (title, text, starting/landing URL, Copyright, HREF links)

Query search engine with top keyterms:

- Website appears in top search results \rightarrow legitimate
- Else, phish; top search results ~ potential targets of phishing

Off-the-Hook anti-phishing system



Off-the-Hook browser add-on

Client-side implementation

- Preserves user privacy
- Resists dynamic phishing

Multi-browser / Cross platform

- Chrome*, Firefox
- Windows (>= 8), Mac OSX (>= 10.8), Ubuntu (>= 12.04)

Off-the-Hook warning

PayPal
Email address
Powered by
Privacy threat detected
We sincerely advise that you do not proceed.
This may be a "phishing" website. It may try to illegitimately get your personal information. <u>More Info</u>
This website may try to mimic:
www.paypal.fi
Close tab Do not display this message for this website in the future

1º

Evaluation

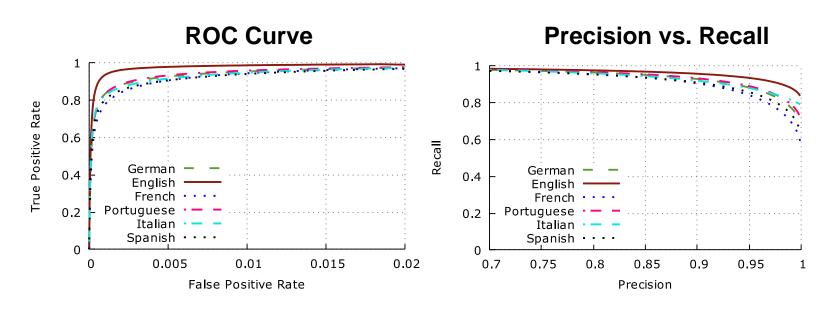
Classifier Training:

- 8,500 legitimate webpages (English)
- 1,500 phishing webpages (taken from PhishTank & manually verified)

Evaluation:

- Legitimate webpages:
 - 100,000 English
 - 20,000 each in French, German, Italian, Portuguese and Spanish
- 2,000 phishing webpages (PhishTank; manually verified)

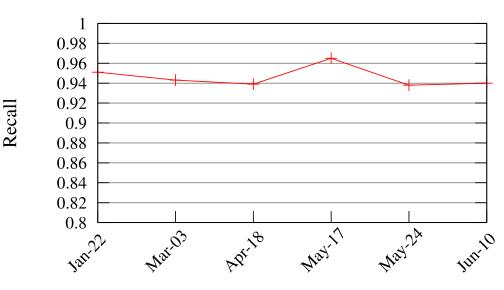
Classification accuracy



200,000 multi-lingual legit / 2,000 phishs (≈ real world distribution)

git	Precision	Recall	FP Rate	AUC	Accuracy
on)	0.975	0.951	0.0008	0.999	0.999

Classification accuracy over time



Model trained:

• September 2015

Applied on phishs:

- January June 2016
- ~2500 fresh, verified phishtank entries

Performance

Small memory footprint: 295 MB

Minimal impact on web surfing

- Phishing webpages:
 - Interaction blocked in < 0.2 second
 - Warning displayed (and target identified) in < 2 seconds
- Legitimate webpages:
 - No perceptible impact (albeit false positives)

Comparison: effectiveness

	FPR	Precision	Recall	Accuracy
Cantina (CMU)	0.03	0.212	0.89	0.969
Cantina+ (CMU)	0.013	0.964	0.955	0.97
Ma et al. (UCSD)	0.001	0.998	0.924	0.955
Whittaker et al. (Google)	0.0001	0.989	0.915	0.999
Monarch (UCB)	0.003	0.961	0.734	0.866
Off-the-Hook	0.0008	0.975	0.951	0.999

Comparison: dataset sizes

	Training	Testing
Cantina (CMU)	-	2,119
Cantina+ (CMU)	2062	884
Ma et al. (UCSD)	17,750	17,750
Whittaker et al. (Google)	9,388,395	1,516,076
Monarch (UCB)	750,000	250,000
Off-the-Hook	10,000	202,000

Off-the-Hook summary

Off-the-Hook phishing website detection system:

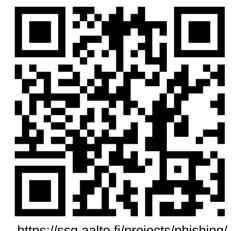
- Exhibits language independence
- Resists dynamic phishing
- Fast: < 0.5 second per webpage (average for all webpages)
- Accurate: > 99.9% accuracy with < 0.1% false positives

Target identification system:

- Fast: < 2 seconds per webpage
- Success rate: > 90% (1 target); 97.3% (set of three potential targets)

[MSSA16] Know Your Phish: Novel Techniques for Detecting Phishing Sites and their Targets, ICDCS 2016 [AMA16] Real-Time Client-Side Phishing Prevention Add-On, ICDCS 2016 [MAGSSA17] Off-the-Hook: An Efficient and Usable Client-Side Phishing Prevention Application, (to appear) IEEE Trans. Comput., 2017

https://ssg.aalto.fi/projects/phishing/



Pitfalls in using ML for security

Adversaries will circumvent detection

The ML model is intended to detect/counter attacks

Adversary *will* attempt to circumvent detection:

- poison learning process
- infer detection model
- mislead classifier

- Modeling constraints and controls while training
- Adversary can control External RDNs!

Classification landscapes are dynamic

Attacks evolve fast

Prediction instances likely differ from training instances

• E.g., Android malware evolves due to for changes in API

- Avoidance of data-driven features
- Models that allow inexpensive retraining

Maintaining labels is expensive

More training data is good; but unbalanced classes typical Data about malicious behavior difficult to obtain

• Labeling is cumbersome, requires expertise, may be inaccurate or may evolve (e.g. phishing URLs)

- Manage with small training sets
- Minimize ratio of training set size to test size

Privacy concerns are multilateral

Data used for ML may be sensitive

- Sensitive information about users in
 - training data \rightarrow model inversion, membership inference
 - prediction process \rightarrow user profiling, e.g., in a cloud setting (ML-as-a-service)

- Client-side classifier to avoid disclosure of URLs
- But model stealing may be a concern

Predictions need to be intelligible

Ability of humans to understand why a prediction occurs

- Detection as malicious \rightarrow forensic analysis
- Explain predictions to users, e.g. why access is prevented
- "Explainability" obligations under privacy regulations like GDPR

- Small set of "meaningful" features
- Use of (ensemble of) shallow decision trees

ML failures can harm user experience

Security is usually a secondary goal

Use of ML must not negatively impact usability

- Decision process should be efficient
- Wrong predictions may have a significant usability cost

- Prediction effectiveness and speed
- In phishing detection, one false positive may be one too much!

Security/privacy applications: desiderata

Circumvention resistance

• Resistance to adversaries

Temporal resilience

Resilience in dynamic environments

Minimality

Use of minimal training data

Privacy

Model privacy, training set privacy, and input/output privacy

Intelligibility

• Transparent decision process

Effectiveness

• Lightweight, accurate models

Skip to conclusions

On avoiding pitfalls

Skip to conclusions Skip to PETS

Model complexity

Complex, non-linear models can resist circumvention better

- Model inversion/stealing is
 - easier with linear regression, decision tree, shallow NN
 - harder with ensemble methods, deep NN
- But complex models tend to have poor
 - intelligibility
 - temporal resilience (retraining training time/data: e.g, kernel SVM, deep NN)

Apply Occam's Razor

• opt for the simplest model possible

Model secrecy

Keeping model secret can help resist circumvention

- E.g., ML-as-a-service hides model from adversaries
- But naïve designs degrade input/output privacy of users

Adapt ML analogue of Kerchoff's desideratum?

- Keep (only) model parameters secret
- Disclose only the ML algorithm

Skip to conclusions

Feature selection

Carefully hand-crafted features can resist circumvention better

- But needs domain expertise and human input
- Automated selection: "effectiveness" not resistance to manipulation

Also can improve intelligibility and temporal resilience

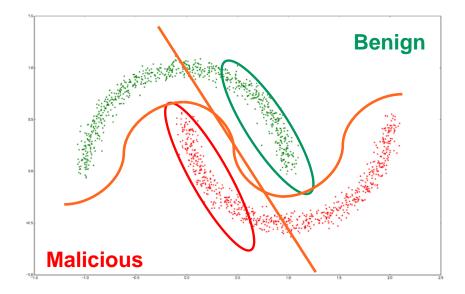
Avoid data-driven feature selection (e.g., bag-of-words)

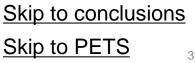
Dataset selection

Selective sampling can harm temporal resilience

- Common mistake: lack of coverage in datasets, e.g.,
 - Top 100 000 Alexa websites
 - 10,000 most popular apps + Malware that contacts malicious domains

Use representative datasets





Evaluation approaches: datasets

Evaluation should mimic real-world usage

• Excellent academic results reportedly often fail in deployment

Use temporal separation: e.g., train on old data, test on new data

• Avoid cross-validation \rightarrow can overestimate performance

Account for unbalanced class distribution

• E.g., Resampling during training, realistic distribution for testing

Privacy-enhancing technologies

Training set privacy

- Adversary during training \rightarrow training with encrypted data
- Generic membership inference attacks \rightarrow differential privacy

Model privacy

• Model extraction \rightarrow complex models, diff. privacy, rate limiting

Input/output privacy for predictions

- Local models (but compromise model privacy)
- MLaaS : Hide inputs/outputs from server; model from client
 - Trusted execution environments on servers (Intel SGX or other commercial TEEs)
 - Oblivious ML predictions

Recommendations and good practice

Model selection

• Keep model secret & simple

Feature selection

• Opt for handcrafted vs. data-driven

Dataset selection

• Use representative datasets

Evaluation approaches

• Prefer temporal vs. cross-validation, use relevant metrics

Privacy-enhancing technologies

• Use local predictions, oblivious ML models, differential privacy

What about Deep Learning?

Complex decision process

- Difficult to explain decisions (intelligibility)
- Difficult to reverse engineer (circumvention resistance)

Training is complex/expensive

- Requires large amount of training data (minimality)
- Relearning is costly (temporal resilience)

Automated "feature selection"

• Adversary can impact prediction by manipulating input (circumvention resistance)

Off-the-Hook for effective phishing detection

Desiderata for using ML for security/privacy applications

Some thoughts on avoiding potential pitfalls

A little provocation!

Additional slides

Feature selection

Rely on few features:

- Limited availability of training data (for some class at least)
- Good practice to generalize a phenomenon: 10x to 100x more training instances than features

Feature minimality

Smaller set of features ensure minimality of model

- Recall: labeled training data is difficult to obtain/maintain
- Also helps intelligibility but can ease circumvention
- Good practice dictates 10x to 100x training instances
- Size of feature set and training set depend on complexity of phenomenon being modeled

Apply Occam's Razor

• opt for the smallest feature set possible

Evaluation – dataset usage

Deal with unbalanced class problem for training

- Resample the class: under-sampling over-represented class
- Generate synthetic example for the under-represented class (e.g. SMOTE)
- Use penalized models (e.g. penalized-SVM)

Represent real-world distribution for testing

- Anomalies << normal instances (e.g. phishs << legitimate websites)
- Preserve repartition for relevant accuracy results from evaluation

Evaluation – metrics

Unbalanced class distribution impacts selection of metrics

• Accuracy, AUC, TP Rate, etc. can be high even for ineffective models

Example combination of metrics:

• Recall $(TP_{rate}) \rightarrow detection capability:$ $• Precision <math>\rightarrow$ reliability / usability: $Precision = \frac{TP}{TP + FN}$ $Precision = \frac{TP}{TP + FP}$