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Problem

How can you find if you have common friends with 

someone (nearby)?

… in a privacy-preserving way
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Applications

 Intuitive means for specifying access control
 Ride sharing

 Tethering Internet access

 ...

 Information
 Friend radar

 ...
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Requirements

 privacy: 

 no more info. to participants than about common friends

 no additional info. to anybody else (e.g., “trusted server”)

 authenticity:

 no false claims of friendship

 efficiency: 

 applicable for mobile usage

 minimize expensive crypto operations
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Current approach: Using a trusted server

 FourSquare, Tencent, … User Location

Alice (x,y)

Bob (x,y)

... ...

Any friends nearby?

“Alice”

Privacy 

Authenticity 

Efficiency 

Alice Bob
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Alternative: Private Set Intersection Protocols

PSI

Input set SI

I R

Input set SR

SI  SR

PSI-CA

Input set SI

I R

Input set SR

|SI  SR|

Secure in the honest-but-curious model

O(|SI|+|SR|) modular exponentiations 

[De Cristofaro et al, FC’10, Asiacrypt ’10, CANS’12]

Initiator

Initiator

Responder

Responder

http://dx.doi.org/10.1007/978-3-642-14577-3_13
http://dx.doi.org/10.1007/978-3-642-17373-8_13
http://www.ics.uci.edu/~gts/paps/psi-ca.pdf
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PSI

Finding Common Friends using PSI naively

Friend 

ID

Carol

Tom

...

Friend 

ID

Carol

David

...

“Carol”

Privacy ?

Authenticity 

Efficiency 

Bob Alice
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Approach

• Make use of widely deployed online social networks

– user authentication, social graph

• But don’t cede even more information to them
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Finding Common Friends using PSI with 

capabilities

1. Distribute (short-lived) bearer capability to friends

2. Private Set Intersection on capability sets to find common friends

PSI

User Capability

Carol

Tom

... ...

Privacy 

Authenticity 

Efficiency 

Social 

Network

App Server
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Can we build a fast “PSI”?

• Why are classic PSIs slow? 

 Designed to work even when input sets are enumerable 

 i.e., elements are predictable

 Naive hash-each-element approach fast, but insecure for 

enumerable input sets

 However, bearer capabilities are random

 Hash-each-element approach is safe

 Still O(n) communication complexity

 Idea: use a Bloom Filter to represent input set
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What is a Bloom Filter?

Efficient data structure for testing set membership

Map each element to k positions in a bit vector

Inserting

Testing

Source: Wikipedia

No false negatives; false positives possible
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insert elements 

into BF

check each element 

for presence in BF 

BF

Bloom Filter PSI Protocol

Privacy 

Authenticity 

Efficiency 

Not a replacement for 

PSI in general!

Initiator I Responder R

Channel binding

Secure channel 

establishment

False positives removal

e.g., challenge-response

Man-in-the-middle

False positives

Insecure channel

Challenges

“Common Friends”: Nagy et al, ACSAC 2013

http://doi.acm.org/10.1145/2523649.2523668
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Comparison: execution time

average of 30 runs
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Two challenges with Common Friends

• Bootstrapping is a problem

• Limited to social paths of length 2



15

Bootstrapping the system

BF-PSI

• Only participating users upload capabilities

Friend 

ID

John

Carol

Friend 

ID

John

The system can only find common friends who are participating in the system
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Fixing bootstrapping: Ersatz profiles

Assumption:

1. App server may query Social Network for list of friends 

of a participating user

Have App server create replacements for missing profiles

1. Identify friends of participating users

2. Create/maintain capabilities for those missing

Ersatz profile = Social Network identity + server generated capability 
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Fixing bootstrapping: Ersatz profiles

App Server Social 

Network

User Capability

Carol

Bob

(Bob,   )

Friends(Bob) = {Carol, John}

(1) Bob uploads capability

(2) Server retrieves Bob’s friends(3) Server generates ersatz 

profiles for missing users

(Carol,   )

(John,   )

(4) Bob downloads capabilities

Bob

John
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Fixing bootstrapping: Ersatz profiles

Friend 

ID

Carol

John

Friend 

ID

John

BF-PSI

App Server

User Capability

Carol

John

Bob

Alice

With ersatz profiles all common friends are always discovered
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Finding lengths of longer social paths

How can you find your social graph “distance” to 

someone (nearby)?

… in a privacy-preserving way

Social PaL: Social Path Length Finder
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More applications

 Intuitive means for specifying access control
 Ride sharing

 Tethering Internet access

 ...

 Information
 Friend radar

 Routing in “dense” ad-hoc environment

 Place familiarity estimation

 ...
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Social Path Length

Definition: 

minimum number of hops in social graph 

between two users 
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Additional requirements

 Privacy:

 Two users can’t learn more than by gathering information 

using standard social network interfaces available to them

 Functional:

 Maximize number of paths discovered between two users

 Determine exact path length between two users

22
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Capabilities as path length proofs

Intuition:

1. Capability distributed to friends used as friendship proof

2. Use hash chains to generate higher order capabilities

From capability c generate ith order capability:

1. Distribute ci to contacts i+1 hops away

2. Recipient includes ci, ci+1, …, cn in input to PSI

  ii cch  i
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Social PaL graph building

Social PaL only learns friend lists of actual users
– users explicitly authorize Social PaL

If relationships in the social network are reciprocal
– Partial view of friend lists of ersatz profiles possible
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Social PaL capability distribution

App Server

Bob

Carol

John: 

Anon:

1. Friends’ capabilities returned with identities

2. Higher order capabilities returned w/o identities

John

Bob AliceCarol ThomasSteve

1
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Social PaL path length discovery

Friend ID

Carol

Anon

John

1

Friend ID

Thomas

Anon
1

BF-PSI

Bob Alice

D(Bob, Alice)=4

Friend ID

Alice

Steve

Anon

BF-PSI

D(Bob, Thomas)=3

1

2 2+ = 4 2 2+ = 4

1

1

11 11

Friend ID

Carol

Anon

John

1

1

2+ = 3

1

1

1

11
1 1 1

Bob Thomas11 11

1

2+ = 42
2+ = 42

2+ = 31

1

John

Bob AliceCarol ThomasSteve

1

1

1

1
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Coverage of social path discovery

• Theorem: If Social PaL discovers a path between A and 

B, then both A and B can determine its exact length.

• Coverage: probability that A & B will discover a k-hop 

path that exists between them in the social network



28

Dataset for estimating coverage

• Social Filter dataset 

– By Sirivanos et al

– Derived from dataset by Gjoka et al (UC Irvine)

– 500 000 users; 30 connections on average
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Simulation for estimating coverage

1. Test set: randomly choose x% of users

– x = 20, 40, 60, 80 (represents fraction using Social Pal)

2. Pick 50k pairs randomly from “test set” w/ k-hop path

– k = 2, 3, 4

3. Compute fraction for which Social PaL discovers path

Repeat steps 1-3 ten times; average results
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Coverage: Social Filter dataset
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Datasets for estimating coverage

• Social Filter dataset 

– By Sirivanos et al

– Derived from dataset by Gjoka et al (UC Irvine)

– 500 000 users; 30 connections on average

– Sampling did not preserve node degree
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Dataset for estimating coverage

• MHRW dataset

– Sampled using Metropolis Hastings random walk

– 95 700 “sampled users”, 175 connections on average

– 72.2 million “outside users”

– among sampled users: 3 connections on average

• From Gjoka et al (Infocom 2010)
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Simulation for estimating coverage

1. Test set: randomly choose x% of “sampled users”

– x = 20, 40, 60, 80 (represents fraction using Social Pal)

2. Pick 50k pairs randomly from “test set” w/ k-hop path

– k = 2, 3, 4

3. Compute fraction for which Social PaL discovers path

Repeat steps 1-3 ten times; average results
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Coverage: MHRW dataset (random walk)

X-axis shows fraction of sampled users

Sampled users: 957 000

Outside users: 72.2 million
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Dataset for estimating coverage

• BFS dataset 

– Sampled using breadth-first search

– 2.2 million sampled users, 310 connections on average

– among sampled users: 53 connections on average

• Also from Gjoka et al (Infocom 2010)
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Coverage: Breadth-first search dataset

X-axis shows fraction of sampled users

Sampled users: 2,2 million

Total users: 93,8 million
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Coverage analysis summary

• Use of ersatz profiles significantly increases coverage

– Always 100 % coverage for 2-hop paths (detects all)

– Only 20% users with Social PaL: coverage > 40%

• Except for MHRW dataset

– 80% users with Social PaL: coverage > 80%, always

• Coverage is better in datasets with higher connectivity

– BFS dataset ~ Social Network in regions with high penetration

• 4-hop paths more readily discovered than 3-hop paths!
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Example App: nearbyPeople

nearbyPeople

Marcin

Nagy

https://se-sy.org/projects/pet/nearbypeople.html
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Example App: SpotShare

SpotShare

(Google Play)

https://play.google.com/store/apps/details?id=org.sesy.tetheringapp


40

Summary

• Privacy-preserving, scalable protocols for finding

– common friends

– lengths of social paths

• Used in two applications (available for download)

– Easy-to-use tethering (“SpotShare”)

– Friend radar (“nearbyPeople”)

• Source code available for research use

• More info at https://se-sy.org/projects/pet/

https://se-sy.org/projects/pet/

