How far removed are you?
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Problem

How can you find if you have common friends with
someone (nearby)?

... In a privacy-preserving way
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Applications

+ Intuitive means for specifying access control

+ Ride sharing

¢ Tethering Internet access
’ "

¢ |Information
* Friend radar
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Requirements

¢ privacy:
+ no more info. to participants than about common friends
+ no additional info. to anybody else (e.g., “trusted server”)
¢ authenticity:
+ no false claims of friendship
+ efficiency:
+ applicable for mobile usage

¢+ minimize expensive crypto operations
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Current approach: Using a trusted server
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Alternative: Private Set Intersection Protocols

Input set SI Input set Sy
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Secure in the honest-but-curious model
O(]S,|+|Sg|) modular exponentiations

[De Cristofaro et al, FC’10, Asiacrypt '10, CANS’12]
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http://dx.doi.org/10.1007/978-3-642-14577-3_13
http://dx.doi.org/10.1007/978-3-642-17373-8_13
http://www.ics.uci.edu/~gts/paps/psi-ca.pdf

Finding Common Friends using PSI naively
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Approach

« Make use of widely deployed online social networks
— user authentication, social graph

 But don’t cede even more information to them
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Finding Common Friends using PSI with

capabilities

1. Distribute (short-lived) bearer capability to friends g Carol :

Social
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Can we build a fast “PSI”?

 Why are classic PSls slow?
+ Designed to work even when input sets are enumerable
+ |i.e., elements are predictable

+ Naive hash-each-element approach fast, but insecure for
enumerable input sets

+ However, bearer capabilities are random
¢+ Hash-each-element approach is safe
+ Still O(n) communication complexity

¢ |dea: use a Bloom Filter to represent input set
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What is a Bloom Filter?

Efficient data structure for testing set membership
Map each element to k positions in a bit vector

xyz} Inserting

A S

oj1,0}j1,141,0}|0}0y0|0}1j0}j1|0(01]0O0

No false negatives; false positives possible

Source: Wikipedia -
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Bloom Filter PSI Protocol
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Challenges

Secure channel
Insecure channel

establishment

P — Privacy J

Man-in-the-middle Channel binding

Authenticity v

insert elements Efficiency \

into BF BF

check each element

w Not a replacement for
" PSI in general!
False positives removal
False positives e.g., challenge-response

e S

A' “Common Friends”: Nagy et al, ACSAC 2013 ‘*‘.
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http://doi.acm.org/10.1145/2523649.2523668

Comparison: execution time
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Two challenges with Common Friends

« Bootstrapping is a problem

« Limited to social paths of length 2

|
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Bootstrapping the system

* Only participating users upload capabilities

Friend
ID

John

_m_,\ = ° Bl
\\\\\\} John

The system can only find common friends who are participating in the system

Carol
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Fixing bootstrapping: Ersatz profiles

Assumption:

1. App server may query Social Network for list of friends
of a participating user

Have App server create replacements for missing profiles
1. ldentify friends of participating users
2. Create/maintain capabilities for those missing

Ersatz profile = Social Network identity + server generated capability
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Fixing bootstrapping: Ersatz profiles

(3) Server generates ersatz (2) Server retrieves Bob’s friends

profiles for missing users

Friends(Bob) = {Carol, John}

Carol ()
Bob ‘ _
John ® App Server Social
A Network

(4) Bob downloads capabilities
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Bob

(1) Bob uploads capability
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Fixing bootstrapping: Ersatz profiles

Carol ‘

John ()

Bob ® App Server
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With ersatz profiles all common friends are always discovered
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Finding lengths of longer social paths

How can you find your social graph “distance” to
someone (nearby)?

... In a privacy-preserving way

Social PaL: Social Path Length Finder
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More applications

+ Intuitive means for specifying access control

+ Ride sharing

+ Tethering Internet access
’ N

+ |Information
* Friend radar

¢ Routing in “dense” ad-hoc environment
+ Place familiarity estimation
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Social Path Length

Definition:

minimum number of hops in social graph
between two users

_______________________________________________________________________________________________________________________]
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Additional requirements

* Privacy:
+ Two users can’t learn more than by gathering information
using standard social network interfaces available to them

¢ Functional:

¢+ Maximize number of paths discovered between two users

+ Determine exact path length between two users

A' UNIVERSITY OF HELSINKI
0 22 22
alto University



Capabilities as path length proofs

Intuition:
1. Capability distributed to friends used as friendship proof
2. Use hash chains to generate higher order capabilities

From capability ¢ generate it order capability:

h'(c)=c ®

1. Distribute c' to contacts i+1 hops away
2. Recipientincludes c', c*1, ..., c"in input to PSI
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Social PaL graph building

Social PaL only learns friend lists of actual users
— users explicitly authorize Social PaL

If relationships in the social network are reciprocal
— Partial view of friend lists of ersatz profiles possible
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Social PalL capability distribution
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1. Friends’ capabilities returned with identities
2. Higher order capabilities returned w/o identities
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Social PalL path length discovery
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Coverage of social path discovery

« Theorem: If Social PaL discovers a path between A and
B, then both A and B can determine its exact length.

« Coverage: probability that A & B will discover a k-hop
path that exists between them in the social network

]
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Dataset for estimating coverage

« Social Filter dataset
— By Sirivanos et al
— Derived from dataset by Gjoka et al (UC Irvine)
— 500 000 users; 30 connections on average
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Simulation for estimating coverage

1. Test set: randomly choose x% of users
— X =20, 40, 60, 80 (represents fraction using Social Pal)

2. Pick 50k pairs randomly from “test set” w/ k-hop path
- k=2,3,4

3. Compute fraction for which Social PaL discovers path

Repeat steps 1-3 ten times; average results
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Coverage: Social Filter dataset

SocialPal discovery coverage [%]
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Datasets for estimating coverage

« Social Filter dataset
— By Sirivanos et al
— Derived from dataset by Gjoka et al (UC Irvine)
— 500 000 users; 30 connections on average
— Sampling did not preserve node degree
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Dataset for estimating coverage

« MHRW dataset
— Sampled using Metropolis Hastings random walk
— 95 700 “sampled users”, 175 connections on average
— 72.2 million “outside users”
— among sampled users: 3 connections on average

* From Gjoka et al (Infocom 2010)
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Simulation for estimating coverage

1. Test set: randomly choose x% of “sampled users”
— X =20, 40, 60, 80 (represents fraction using Social Pal)

2. Pick 50k pairs randomly from “test set” w/ k-hop path
- k=2,3,4

3. Compute fraction for which Social PaL discovers path

Repeat steps 1-3 ten times; average results
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Coverage: MHRW dataset (random walk)
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Dataset for estimating coverage

« BFS dataset

— Sampled using breadth-first search
— 2.2 million sampled users, 310 connections on average
— among sampled users: 53 connections on average

« Also from Gjoka et al (Infocom 2010)
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Coverage: Breadth-first search dataset
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Coverage analysis summary

« Use of ersatz profiles significantly increases coverage
— Always 100 % coverage for 2-hop paths (detects all)
— Only 20% users with Social PaL: coverage > 40%
« Except for MHRW dataset
— 80% users with Social PaL: coverage > 80%, always
« Coverage is better in datasets with higher connectivity
— BFS dataset ~ Social Network in regions with high penetration

« 4-hop paths more readily discovered than 3-hop paths!
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Example App: nearbyPeople

A
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https://se-sy.org/projects/pet/nearbypeople.html

Example App: SpotShare

SPOTSHARE ; SPOTSHARE

SHARING PROVIDER

12/05/2014 19:23:43 Shared AP
"hB6VjIBeRKGHNis" configured.

12/05/2014 19:23:43 You are connected.
to a friend-of-friend(2)

12/05/2014 19:23:25 Provider search
start

READY READY
— N = SpotShare = o =

SGoogIe Plaxz
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https://play.google.com/store/apps/details?id=org.sesy.tetheringapp

Summary

Privacy-preserving, scalable protocols for finding
— common friends
— lengths of social paths

Used in two applications (available for download)

— Easy-to-use tethering (“SpotShare”) -
[=] 2 el

— Friend radar (“nearbyPeople”)
Source code available for research use
More Info at https://se-sy.ora/projects/pet/
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