How far removed are you?

Scalable Privacy-Preserving Estimation of Social Path Length with Social PaL

N. Asokan

joint work with Marcin Nagy, Thanh Bui, Emiliano De Cristofaro, Ahmad-Reza Sadeghi, Jörg Ott
Problem

How can you find if you have common friends with someone (nearby)?

... in a privacy-preserving way
Applications

- Intuitive means for specifying access control
 - Ride sharing
 - Tethering Internet access
 - ...

- Information
 - Friend radar

- ...

Requirements

- **privacy:**
 - no more info. to participants than about common friends
 - no additional info. to anybody else (e.g., FourSquare)

- **authenticity:**
 - no false claims of friendship

- **efficiency:**
 - applicable for mobile usage
 - minimize expensive crypto operations
Current approach: Using a trusted server

- FourSquare, Tencent, …

<table>
<thead>
<tr>
<th></th>
<th>Privacy</th>
<th>Authenticity</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bob</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Who is near me?

“Alice”

Alice Bob
Alternative: Private Set Intersection Protocols

![Diagram showing PSI and PSI-CA protocols]

Secure in the honest-but-curious model
$O(|S_I|+|S_R|)$ modular exponentiations

[De Cristofaro et al, FC’10, Asiacrypt ’10, CANS’12]
Finding Common Friends using PSI naively

<table>
<thead>
<tr>
<th>Friend ID</th>
<th>Carol</th>
<th>Tom</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bob</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Friend ID</th>
<th>Carol</th>
<th>David</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Privacy</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticity</td>
<td>❌</td>
</tr>
<tr>
<td>Efficiency</td>
<td>❌</td>
</tr>
</tbody>
</table>
Approach

• Make use of widely deployed online social networks
 – user authentication, social graph
• But don’t cede even more information to them
Finding Common Friends using PSI with capabilities

1. Distribute (short-lived) bearer capability to friends

2. Private Set Intersection on capability sets to find common friends
Can we build a fast “PSI”?

- Why are classic PSIs slow?
 - Designed to work even when input sets are enumerable
 - i.e., elements are predictable
 - Naive hash-each-element approach fast, but insecure for enumerable input sets
 - However, bearer capabilities are random
 - Hash-each-element approach is safe
 - Still O(n) communication complexity

- Idea: use a Bloom Filter to represent input set
Bloom Filter PSI Protocol

Initiator I

Responder R

Challenges
- Insecure channel
- Man-in-the-middle
- False positives

Secure channel establishment

Channel binding

Insert elements into BF

Check each element for presence in BF

False positives removal e.g., challenge-response

Privacy ✓
Authenticity ✓
Efficiency ✓

Not a replacement for PSI in general!

“Common Friends”: Nagy et al, ACSAC 2013
Comparison: execution time

average of 30 runs
Two challenges with Common Friends

- Bootstrapping is a problem
- Limited to social paths of length 2
Bootstrapping the system

• Only participating users upload capabilities

The system can only find common friends who are participating in the system
Fixing bootstrapping: Ersatz profiles

Assumption:
1. App server may query Social Network for list of friends of a participating user

Have App server create replacements for missing profiles
1. Identify friends of participating users
2. Create/maintain capabilities for those missing

Ersatz profile = Social Network identity + server generated capability
Fixing bootstrapping: Ersatz profiles

(3) Server generates ersatz profiles for missing users

<table>
<thead>
<tr>
<th>User</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carol</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td></td>
</tr>
<tr>
<td>John</td>
<td></td>
</tr>
</tbody>
</table>

(2) Server retrieves Bob’s friends

Friends(Bob) = \{Carol, John\}

(1) Bob uploads capability

\((Bob, \bullet)\)

(4) Bob downloads capabilities

\((Carol, \bullet)\)

\((John, \bullet)\)

Bob
Fixing bootstrapping: Ersatz profiles

With ersatz profiles all common friends are always discovered
Finding lengths of longer social paths

How can you find your social graph “distance” to someone (nearby)?

… in a privacy-preserving way

Social PaL: Social Path Length Finder
More applications

- Intuitive means for specifying access control
 - Ride sharing
 - Tethering Internet access
 - ...

- Information
 - Friend radar

- Routing in “dense” ad-hoc environment
- Place familiarity estimation
- ...

Social Path Length

Definition:

minimum number of hops in social graph between two users
Additional requirements

- **Privacy:**
 - Two users can’t learn more than by gathering information using standard social network interfaces available to them

- **Functional:**
 - Maximize number of paths discovered between two users
 - Determine exact path length between two users
Capabilities as path length proofs

Intuition:
1. Capability distributed to friends used as friendship proof
2. Use hash chains to generate **higher order capabilities**

From capability c generate n\(^{th}\) order capability:

\[h^i(c) = c^i \]

1. Distribute \(c^i \) to contacts i+1 hops away
2. Recipient includes \(c^i, c^{i+1}, \ldots, c^n \) in input to PSI
Social PaL graph building

Social PaL only learns friend lists of actual users
 - users explicitly authorize SoPaL

If relationships in the social network are reciprocal
 - Partial view of friend lists of ersatz profiles possible
Social PaL capability distribution

Bob —— Carol —— Steve —— Thomas —— Alice

1. Friends’ capabilities returned **with identities**
2. Higher order capabilities returned **w/o identities**
Social PaL path length discovery

D(Bob, Alice) = 4

D(Bob, Thomas) = 3
Coverage of social path discovery

• *Theorem*: If Social PaL discovers a path between A and B, then both A and B can determine its exact length.

• *Coverage*: probability that A & B will discover a k-hop path that exists between them in the social network
Dataset for estimating coverage

• Social Filter dataset
 – By Sirivanos et al
 – Derived from dataset by Gjoka et al (UC Irvine)
 – 500 000 users; 30 connections on average
Simulation for estimating coverage

1. Test set: randomly choose x% of users
 - x = 20, 40, 60, 80 (represents fraction using Social PaL)
2. Pick 50k pairs randomly from “test set” w/ k-hop path
 - k = 2, 3, 4
3. Compute fraction for which Social PaL discovers path

Repeat steps 1-3 ten times; average results
Coverage: Social Filter dataset

![Graph showing Social PaL discovery coverage vs. Fraction of OSN with Social PaL. The graph includes lines for 2-hop paths, 3-hop paths, and 4-hop paths, with and without ersatz.](image)
Datasets for estimating coverage

• Social Filter dataset
 – By Sirivanos et al
 – Derived from dataset by Gjoka et al (UC Irvine)
 – 500 000 users; 30 connections on average
 – Sampling did not preserve node degree
Dataset for estimating coverage

• MHRW dataset
 – Sampled using Metrropolis Hastings random walk
 – 95 700 “sampled users”, 175 connections on average
 – 72.2 million “outside users”
 – among sampled users: 3 connections on average
• From Gjoka et al (Infocom 2010)
Simulation for estimating coverage

1. Test set: randomly choose x% of “sampled users”
 – x = 20, 40, 60, 80 (represents fraction using Social PaL)
2. Pick 50k pairs randomly from “test set” w/ k-hop path
 – k = 2, 3, 4
3. Compute fraction for which Social PaL discovers path

Repeat steps 1-3 ten times; average results
Coverage: MHRW dataset (random walk)

X-axis shows fraction of sampled users
Sampled users: 957,000
Outside users: 72.2 million
Dataset for estimating coverage

- BFS dataset
 - Sampled using breadth-first search
 - 2.2 million sampled users, 310 connections on average
 - among sampled users: 53 connections on average
- Also from Gjoka et al (Infocom 2010)
Coverage: Breadth-first search dataset

X-axis shows fraction of sampled users
Sampled users: 2,2 million
Total users: 93,8 million
Coverage analysis summary

• Use of ersatz profiles significantly increases coverage
 – Always 100% coverage for 2-hop paths (detects all)
 – Only 20% users with Social PaL: coverage > 40%
 • Except for MHRW dataset
 – 80% users with Social PaL: coverage > 80%, always

• Coverage is better in datasets with higher connectivity
 – BFS dataset ~ Social Network in regions with high penetration

• 4-hop paths more readily discovered than 3-hop paths!
Example applications

SpotShare

nearbyPeople
Summary

• Privacy-preserving, scalable protocols for finding
 – common friends
 – lengths of social paths
• Used in two applications (available for download)
 – Easy-to-use tethering (“SpotShare”)
 – Friend radar (“nearbyPeople”)
• Source code available for research use
• More info at https://se-sy.org/projects/pet/