
Man-in-the-Middle in Tunnelled Authentication
Protocols

Extended Abstract?

N. Asokan, Valtteri Niemi, and Kaisa Nyberg

Nokia Research Center, Finland
{n.asokan,valtteri.niemi,kaisa.nyberg }@nokia.com

Abstract. Deploying a new security protocol is expensive. This encourages sys-
tem designers to look for ways of re-using existing infrastructure. When security
protocols and components are re-used, it is critical to re-examine the security of
the resulting system as a whole. For example, it has become a standard paradigm
to run a legacy client authentication protocol within a secure tunnel. The com-
monest example of such composition is the use of HTTP authentication inside a
TLS tunnel.
In this paper, we describe a man-in-the-middle attack on such protocol composi-
tion. The vulnerability arises if the legacy client authentication protocol is used
both in tunnelled and untunnelled forms. Even when the client authentication pro-
tocol and the tunnel protocol are both secure, composing them in the customary
manner results in an insecure system.
We propose a solution to this problem by using a cryptographic binding between
the client authentication protocol and the tunnel protocol.

1 Introduction

When new services and applications are developed, their security requirements
and trust assumptions may necessitate designing and deploying new security pro-
tocols. However, deploying a new security protocol is expensive. This encourages
system designers to look for ways of re-using existing infrastructure. One form
of reuse is to build on existing protocol components or frameworks so that the
need to deploy new software is reduced. But the most difficult aspect of deploy-
ment is the cost of provisioning initial security associations, especially to end
user devices. Consequently, there is considerable pressure to reuse security pro-
tocols and security context databases beyond their originally intended purposes
and environments.
Re-use is generally considered good practice. However, when security protocols
and components are reused, it is critical to re-examine the security of the resulting
system as a whole. This is particularly important when different components of
the composition have different endpoints, either in different layers in the same
entity, or different entities altogether. The fact that there are no easy-to-use tools
or methodologies to verify the correctness of security protocols makes protocol
re-use a risky task.

? An earlier, longer version of this work appeared as a research report [5]

Faced with this difficulty, designers who needed to re-use legacy client authen-
tication protocols and/or security associations have been customarily using an
obvious approach to secure legacy client authentication protocols when there is a
need to re-use them in a new scennario. They define an authentication protocol as
a combination of two protocols: The legacy client authentication mechanism is
run inside a secure tunnel. The most common example of this type of construction
is the combination of a server-authenticated TLS tunnel [9] and the HTTP Digest
Authentication mechanism [11]. Shortcomings of the legacy client authentica-
tion protocol in the new environment can apparently be offset by the protective
tunnelling. For example, HTTP Digest Authentication may be based on a sim-
ple user-name/password; but the TLS tunnel will protect the password from any
eavesdroppers. At the same time, the legacy authentication method may continue
to be used in legacy environments. Therefore, at first glance, secure tunnelling
appears to be a reasonable approach. This is why, as described in Section 2, this
type of protocol composition has been widely used when there is a perceived need
for reuse of legacy authentication mechanisms.
Unfortunately, when such a legacy client authentication protocol needs to be run
both in the legacy environment as well as in a tunnelled environment, a man-in-
the-middle attack becomes possible. Even when the client authentication protocol
and the tunnel protocol are both secure, the composing them in the customary
manner described above, results in an insecure system. In this paper, we describe
the attack, and discuss how it can be avoided by cryptographically binding the
inner and outer protocols. If the inner client authentication protocol produces a
suitable key, this bindingdoes not require any changesto the inner protocol. This
is a very important requirement because the whole point of using legacy protocols
is that they are already widely deployed.
In section 2 some background information is provided by highlighting the com-
mon tunnelling approach and using PEAP as an example to describe how this is
instantiated in practice. Then the man-in-the-middle attack is described in section
3. Ways of removing the vulnerability are presented in section 4. The use of weak
authentication methods is discussed in section 5. The implications of this attack
are discussed in 6. The conclusions are summarized in section 7. Finally, a brief
status update is provided in section 8.

2 IETF Drafts on Tunnelled Authentication Protocols

2.1 The general model

In this section, we present a general description of how tunnelled authentication
protocols are usually constructed. Although we discuss examples that use exten-
sible authentication protocol (EAP) as the inner client authentication protocol,
the discussion is applicable for any tunnelled authentication protocol.
EAP, described in RFC2284 [17], is a standard framework for client authenti-
cation protocols. By using EAP in a system, it is possible to enable the system
to support a number of legacy authentication schemes, including smart cards,
Kerberos, public key mechanisms, One Time Passwords, cellular authentication
mechanisms like GSM [14] or UMTS AKA (Universal Mobile Telecommunica-
tion System, Authentication and Key Agreement protocol) [3], and many others.
EAP is run between a client and a server. We call this server abackend server.
There may be a afront-end authenticatorbetween the client and the backend

Tunneling protocol
Server authenticated

secure tunnel establishment

Authentication protocol
Client authentication

secure tunnel

Front-end
authenticator

Back-end Server
(Tunnel authentication)

Home Authentication
Server

(Legacy authentication)
Client

Fig. 1.Customary construction of a tunnelled authentication protocol

server. The front-end authenticator will simply forward authentication messages
to the backend server. The backend server may use yet another server to help au-
thenticate the client. We call this third server thehome authentication server. Use
of EAP allows new authentication methods to be developed without requiring de-
ployment of new code on the front-end authenticator. The front-end authenticator
acts as a “pass-through”, and need not understand specific EAP methods.

Recently new protocols have been proposed in the Internet Engineering Task
Force (IETF) for running EAP inside a server-authenticated tunnel. Examples
of such protocols are PIC [23], PEAP [15], EAP-TTLS [12], POTLS [20], and
most recently SLA [13], which led to the mechanisms for supporting legacy au-
thentication methods in IKEv2 [10]. Some of these protocols, like PEAP, are mo-
tivated by a wish to correct perceived weaknesses of EAP, such as the lack of user
identity protection and lack of a standardized mechanism for key exchange [15].
Others like PIC, POTLS and SLA are motivated by a desire to re-use legacy
authentication credentials and databases for new applications. All of these new
protocols are constructed in the same basic manner. First, a secure tunnel is set
up using a suitable protocol like TLS. In most cases, the tunnel is also server-
authenticated. Then the client authentication protocol is run inside this tunnel.
This general model of this customary approach is illustrated in Figure 1. Other
forms of tunnelled authentication protocols, such as HTTP Digest authentication
inside a TLS tunnel, also conform to this general model.

2.2 Protected EAP

Protected EAP (PEAP) [15] is an example of the type of composition described
in Figure 1: it wraps the EAP protocol messages within TLS [9]. It claims to
provide user anonymity and built-in support for key exchange.
The relationship between the EAP peer (client), front-end authenticator, known as
the “network access server” (NAS) in PEAP, and a backend server, known as the
“back-end authentication server” in PEAP, is depicted in Figure 2. As described
in the figure, the EAP conversation “passes through” the NAS on its way between
the client and the back-end authentication server. While the authentication con-
versation is between the EAP client and the back-end authentication server, the
NAS and back-end authentication server need to have established trust for the
conversation to proceed.

NAS
(Front-end

authenticator)

Backend
ServerClient

Ciphersuite
(for link layer)

Ciphersuite
(for link layer)

EAP Method EAP Method

EAP API EAP API

over PPP or
802.11 link

EAP conversation

Trust

Keys

Server-authenticated tunnel

Fig. 2.Relationship between EAP client, back-end authentication server and NAS in PEAP [15]

The client and the back-end server first set up a TLS channel over EAP. The client
authentication protocol messages between the client and the back-end server are
encrypted and integrity protected within this TLS channel. The NAS does not
have knowledge of the TLS master secret derived between the client and the
back-end authentication server, and cannot decrypt the PEAP conversation. The
back-end server derives master session keys from the TLS master secret via a
one-way function and conveys them to the NAS which can then use these session
keys to protect subsequent link-layer communication between it and the client.

The session key is transported from the server to the NAS using e.g. Radius [22]
or DIAMETER [8] attributes.
In a recent Internet draft, EAP SIM GMM authentication [7], an application of
PEAP to GSM authentication was presented. The same approach can be used to
combine PEAP with AKA which is the client authentication mechanism in the
third generation UMTS networks. The message flow in PEAP with EAP AKA
client authentication in the context of wireless local area network (WLAN) access
authentication is depicted in Figure 3.
The WLAN authentication server is in the role of the back-end server. The ter-
minal has a smart-card containing a secret key. The same key is available in the
subscriber database of HSS (Home Subscriber Server) located in the home net-
work of the subscriber. The terminal sends a cellular identity like the International
Mobile Subscriber Identity (IMSI) as part of EAP AKA. The WLAN server uses
a protocol like DIAMETER to send the IMSI to the HSS. HSS returns an AKA
authentication vector, which is a quintuplet containing a challenge (RAND), an
authenticator for the challenge (AUTN), expected response (XRES), and session
keys IK (for integrity) and CK (for confidentiality) to the WLAN server. The
WLAN server forwards RAND and AUTN to the terminal via EAP AKA. The
terminal can now verify AUTN to confirm that RAND comes from HSS, and
compute its own response RES and the keys IK and CK. The terminal sends RES
back to the WLAN server using EAP AKA. If RES and XRES are the same,
WLAN server considers the terminal to be authenticated. The AKA protocol was
defined as part of the third generation (3G) cellular standardization activities.
More detailed descriptions of 3G protocols are available elsewhere, e.g., [16].
Again, only the TLS master secret is used to derive the session keys to be used
to protect the WLAN link. The secret key material carried within the UMTS
AKA [16] authentication quintuplets is not used.

3 Man-in-the-Middle Attack

Why can the tunnelling approach go wrong? There are two reasons:
– The legacy client authentication protocol is used in other environments, e.g.,

plain EAP without any tunnelling, or without any EAP encapsulation at all,
e.g., direct use of one-time passwords, or cellular authentication protocols.

– The client cannot or does not properly authenticate the server (even when
the authentication protocol is usedwithin a supposedly server-authenticated
tunnel).

The active attack by a Man-in-the-Middle (MitM) proceeds as follows:
1. MitM either waits for a legitimate device to start an untunnelled legacy re-

mote authentication protocol or actively fools the legitimate device into ini-
tiating an untunneled remote authentication protocol. It then captures the
initial message sent by the legitimate client.

2. MitM initiates a tunnelled authentication protocol with a backend server.
3. After the tunnel is set up between MitM and the backup server, the MitM

starts forwarding legitimate client’s authentication protocol messages through
the tunnel.

4. MitM unwraps the legacy authentication protocol messages received through
the tunnel from the backend server and forwards them to the legitimate
client.

TLS(EAP-Response/AKA-Challenge (RES))

IMSI [e.g., over DIAMETER]

secured by PEAP TLS tunnel

NAS
(Front-end

authenticator)

Backend
Server

(TLS authentication)

Client

Establishing a PEAP tunnel (server authenticated)

EAP-Request/Identity

PEAP Part 1 – TLS based on server certificate

TLS(EAP-Request/Identity)

TLS(EAP-Response/Identity(IMSI))

RAND,AUTN,XRES,IK,CK
[e.g., over DIAMETER]

WLAN master session key
(based on TLS tunnel key)

TLS(EAP-Request/AKA-Challenge (RAND, AUTN))

Data traffic on
secured link

Home Auth.
Server

(AKA authentication)

Fig. 3.PEAP with EAP AKA: Example Message Flow

5. After the remote authentication ended successfully, MitM derives the session
keys from the same keys it is using for the tunnel.

Some legacy authentication protocols do not support mutual authentication or
session key agreement. When they are used in an open environment, they are
obviously vulnerable to MitM attacks. However, tunneling a generic authentica-
tion protocol framework like EAP makes the MitM attack possble even when
the actual authentication method used within the framework does support mutual
authentication and session protection. This situation arises because the backend
server cannot be certain that the client in the legacy authentication protocol and
the client endpoint of the tunnel are the same entity.
Figure 4 shows how the MitM attack works in PEAP with EAP AKA as the ex-
ample client authentication protocol in a WLAN access authentication setting.
The victim terminal assumes that the MitM is a UMTS radio access network.
Note that the UMTS AKA protocol itself [16] and its EAP encapsulation [3] pro-
vide for mutual authentication of the user terminal and the radio access network:
AUTN parameter is used to authenticate the source of the RAND challenge. The
attempt to tunnel EAP AKA through PEAP effectively defeats this protection. In
other words, even though the inner authentication protocol (EAP AKA) and the
outer protocol (TLS) are both secure as such, composing them in the customary
manner results in an insecure system.
Surprisingly, this type of protocol composition is very popular. As mentioned
before, the most widespread of these may be the use of HTTP authentication [11]
through a TLS tunnel (i.e., to anhttps URL). Many web sites use this type of
a scheme for controlling access to their resources; for example, on-line access
to bank accounts are usually controlled this way. Naturally, if the authentication
method is usable without a TLS tunnel (e.g., to a plainhttp URL), a MitM
attack is possible.

4 Avoiding the attack: Cryptographic Binding

The vulnerability discussed above is due to the fact that the legitimate client and
the backend server had no way to verify that their peer in the client authentica-
tion protocol is the same as the entity at the other end of the outer tunnel which
possesses the session keys at the end of the protocol. We can enable this verifica-
tion either implicitly or explicitly. The goal ofimplicit authenticationis to ensure
that the only the legitimate parties are capable of gaining access to the correct
session. Inexplicit authenticationa separate authentication step is performed to
verify that the entities possessing the master secrets from which the session keys
are derived, are indeed the legitimate parties. In both cases, the authentication is
provided by a cryptographic binding between the inner and the outer protocols.
These solutions are applicable to mutual authentication protocols that are con-
structed as a combination of two authentication protocols. The outer protocol is
assumed to support the construction of a secure tunnel based on server authenti-
cation. As we saw, this is the case with all the protocols cited in section 2.
A pre-requisite to cryptographic binding is that the inner authentication protocol
must produce a key S in one of two ways:

1. S is a session key resulting from a run of the inner protocol; i.e., it is an
authenticationandkey agreement protocol; or

Stolen WLAN
link

IMSI

RES

PEAP Part 1 – TLS based on server certificate

TLS(EAP-Response/AKA-Challenge (RES))

IMSI [e.g., over DIAMETER]

secured by PEAP TLS tunnel

NAS
(Front-end

Authenticator)

Backend
Server

(TLS authentication)

Home Auth.
Server

(AKA authentication)
MitM

Establishing a PEAP tunnel (server authenticated)

EAP-Request/Identity

TLS(EAP-Request/Identity)

TLS(EAP-Response/Identity(IMSI))

RAND,AUTN,XRES,IK,CK
[e.g., over DIAMETER]

WLAN master session key
(based on TLS tunnel key)

TLS(EAP-Request/AKA-Challenge (RAND, AUTN))

Client

IMSI Request

RAND, AUTN

Fig. 4.Man-in-the-Middle in PEAP, e.g., with EAP AKA

2. S is the client’s long-term authentication key and is accessible for derivation
of session keys directly, outside the authentication protocol.

A typical example of a protocol of the first type is EAP AKA. Figure 3 illustrates
how EAP AKA can be used within the PEAP protocol. The AKA quintuplets con-
tain 256 bits of secret session keys which would be readily available for session
key derivation by the backend server. These AKA session keys are also available
in the client’s device. There are several examples of existing client authentication
protocols that support session key derivation. For such protocols, no changes are
required to provide the necessary cryptographic binding.
In the second case, it is necessary to specify an additional key derivation ap-
plication that has direct access to client’s authentication key. This would be in
addition to the existing authentication protocol and is to be judged separately for
each case.
LetK be the ultimate session key. In PEAP and EAP-TTLS the session keyK is
the master key that finally becomes available to the local backend server (access
server), which usesK to derive further session keys. LetT denote the master key
that is used to derive the secret keys for the protection tunnel. For example, the
TLS master key derived in the TLS handshake of PEAP is a typical example of
T .
We achieve the binding between the inner and outer protocols by bindingS and
K. On the network side some entity, let us call it “binding agent”, is responsi-
ble for collecting the secret key informationS andT and creating the binding
value. Typically the binding agent is either the local backend server or the home
authentication server. IfS is a long term authentication key of the client, then the
binding agent is preferably co-located with client’s home authentication server,
to avoid transfer ofS across the network.
As mentioned, there are two ways of usingS to achieve the necessary binding
of S toK. In implicit binding, the binding is established directly by takingS in
addition toT as input to the session key computation. The binding agent and the
client each compute its copy of the session keyK from S andT using a pseudo
random function suitable for key derivation. The binding agent distributes the
session key to the network entities that need to use it for further communication
with the client. This provides implicit authentication of the client.
In explicit binding we make use of a cryptographic check value to verify that the
client who is in possession ofT is also in possession ofS. The binding agent and
the client each compute its copy of a verification valueV from S andT using
a cryptographic hash function or a message authentication function. They then
transfer their verification values to some network entity responsible for compar-
ing the two verification values. If they are equal, the client is granted access to the
network service. The comparing entity can be the backend server or the home au-
thentication server. This provides explicit authentication of the client. If explicit
binding is used then the session keyK can be based onS or T or both.
For both the implicit and explicit binding mechanisms we assume that the process
to construct the tunnel secretT is contributory. However, it is not necessary that
the server is explicitly authenticated by the client in the tunnel establishment. It is
also possible for the client to rely on the home server for the server authentication.
Then the binding ofS toK provides server authentication also in the cases where
the client neglects the result of the server authentication during tunnel setup, or
an anonymous tunnel is used.

Explicit binding is always necessary in case the session keyK is based solely
on the tunnel secretT . A variation of explicit binding works as follows. In the
computation of the verification valueV , some tunnel-indication dataD is used
instead ofT . For example,D can be an entire protocol message sent by the client,
or the addresses of the parties or just a text string unique to the application. This
variation is useful in cases where access toT is not available because of imple-
mentation constraints (e.g., a black-box implementation of TLS will not allow
the TLS master key to be accessible outside TLS usage). In typical scenarios,D
does not specifyT in a unique manner. Then this approach is weaker than the
normal explicit binding, described earlier, because it relies on the client carrying
out server authentication properly during tunnel setup.
It is also possible to implement both implicit and explicit binding. In such a case
the explicit binding verification acts as a key confirmation for the agreed session
key.

5 Weak authentication Protocols

Consider a client authentication protocol based on weak secrets like passwords.
Suppose further that the protocol does not use any modern techniques to protect
the weak secret against guessing attacks. Many of the tunnelling protocols de-
scribed earlier, e.g., the PIC protocol, are particularly intended to address such
weak authentication protocols, which are insecure without added protective tun-
nelling. One may ask what is the impact of the cryptographic binding described
in section 4 on such a case. Does the binding possibly improve the overall secu-
rity? It is clear that if the client is unable to perform server authentication for the
outer tunnel protocol, then the binding does not improve the security: an attacker
could masquerade as the server in protocol run, and use the information gained
in a dictionary attack on the password.
However, all the examples we considered in section 2 do assume that the client
can perform server authentication for the tunnel protocol. In this case, the attacker
cannot pretend to be the server end of the tunnel towards the client. If the attacker
is a passive eavesdropper, he cannot perform the dictionary attack on the binding
because the binding includes the outer tunnel key which is assumed to have suf-
ficient entropy. If the attacker pretends to be the client towards the server and if
the server does the binding first (e.g., if the server sends the binding verification
value to the client, or if it starts using the key K or S to encrypt or authenticate
messages), then he can perform a dictionary attack. But this is easily prevented
by requiring that the client does the binding first and demonstrate knowledge of
S and T to the server. If this step fails, the server must terminate the session.
Thus, the cryptographic binding does notreducethe security of a weak authenti-
cation protocol. However, to be fully secure, weak authentication protocols used
with server authenticated tunnels must satisfy two conditions:

A1 Correct server authentication: the clientmust perform server authentication
correctly, and

A2 No mixing of authentication modes: if a client uses tunnelled authentication,
it must not use the same authentication protocol outside secure tunnels.

Assumption A2 is unavoidable for weak authentication protocols. But it clearly
diminishes the capability of the tunnelling protocol to leverage the advantages of

already deployed legacy authentication protocols. Well-designed authentication
protocols do not need assumption A2.

If assumption A2 can be made in general, cryptographic binding is not necessary,
but the legacy advantages are lost. On the other hand, cryptographic binding is not
applicable to the legacy authentication protocols that do not yield a key suitable
for cryptographic binding.

Generic tunnelling protocols, by definition, should be able to work with all types
of authentication protocols while making as few assumptions about them as pos-
sible. Therefore a generic tunnelling protocol must not take A2 as a blanket as-
sumption to be imposed on all authentication protocols. Instead it should allow
the possibility of using the type of cryptographic binding described in section 4
where appropriate. This way, the tunnelling protocol can be secure, generic (sup-
porting both weak and strong authentication protocols), and non-invasive (avoid-
ing unnecessary restrictions on strong authentication protocols).

6 Impact and outlook

The attack is applicable to a number of proposed protocols, including PIC, IKEv2,
XAUTH, PEAP, EAP TTLS and POTLS [1]. These are not academic toy proto-
cols, but protocols with a good prospect of being deployed and used widely. For
IKEv2 it concerns, in particular, the Secure Legacy Authentication (SLA) pro-
tocol, which is intended to be included in the main body of IKEv2. The conclu-
sion from the discussion at the IPSEC list [24] was that an explicit cryptographic
binding for SLA was to be specified. The binding is mandated in case the legacy
authentication method provides a shared secret. This change has already been
included in a more recent version of the IKEv2 draft [10].

The sheer number of different protocol combinations where the same MitM prob-
lem has manifested is surprising. One reason is the lack of easily accessible tools
for specifying and verifying security properties of protocols. The security of pro-
tocol composability is still an emerging area of research. In [18], Meadows points
out the current status of research as well as other practical examples of security
failures arising from protocol composition. Also, even though the security proto-
cols research community has been working on protocol verification for decades,
the current tools and methodologies require significant expertise, and are not yet
ready for use by people who are not actively doing protocol verification research.
It is only recently that experts from the security protocols community have started
analyzing draft specifications from open standardization bodies [18]. As Mead-
ows points out, the possibility to analyze draft protocols before they become stan-
dards is an important opportunity for researchers in this area.

A second possible reason is that, in all of the cases examined, the legacy authen-
tication protocol was a framework, rather than a concrete protocol. This means
that the properties of individual authentication protocols are not readily notice-
able to the designers of the tunnelling approach. A particular problem is created
by the large variety of legacy protocols which differ in the level of security pro-
vided: e.g., some of them provide strong mutual authentication, and others are
based on a user selected password. It is not clear if it is useful or even possible to
accommodate all different protocols within the same tunnelling framework.

7 Conclusion

In this paper we have shown that when a client authentication protocol is tun-
nelled within another protocol, it is necessary for each endpoint to demonstrate
that it has participated in both protocols within the authentication exchange. If
this is not demonstrated then the tunnelled authentication protocol is vulnerable
to a Man-in-the-Middle attack.
We have also shown that the required demonstration can be provided in an im-
plicit or explicit way in a form of a cryptographic binding between the tunnel
protocol and the authentication protocol. In our proposals the binding facility is
implemented in the outer tunnel protocol. It requires the authentication protocol
to provide some secret key values for the use of the binding. This approach is
preferred since it requires minimal or no changes to the authentication protocols.
It allows for flexible and secure usage of an authentication protocol in multiple
authentication environments without the authentication protocol being aware of
the specific environment.
The cryptographic binding proposed in this paper does not diminish the secu-
rity of the tunnelled protocols in any case. If the inner authentication protocol
is a weak authentication protocol based on a weak client secret, the tunnel must
be constructed based on server authentication, and the client should not use the
same secret in different environments. Otherwise, the protocol is vulnerable to
dictionary attacks, with or without cryptographic binding. Strong authentication
methods are not vulnerable to dictionary attacks, and hence should not be re-
stricted to tunnelled environments only. Hence the need for the type of binding
described in this paper.

8 Current developments

We pointed out the MitM problem to the authors of some of the tunnelling pro-
posals in early October, 2002. Since then a number of positive developments
have taken place. The IETF EAP working group has recognized the problem of
securely binding a sequence of authentication methods together. It is now marked
as an open issue to be solved [6]. Another draft [21] describes the type of solu-
tions prescribed in this paper. Designers of some of the affected protocols have
published new versions of their specifications: for example, the new version of
the PEAP draft specification [2] adopts the techniques specified in [21] to pro-
tect against MitM attacks. Other affected specifications, such as EAP SIM GMM
authentication [7] and PIC [23] have been withdrawn altogether.
We therefore expect that in due course of time the problem will be solved in
all the identified specifications. However, it requires significant analysis and de-
velopment for each protocol. In each case one must decide at which protocol
message the binding is implemented, which parties shall create the binding, and
how to derive the shared secrets used for the binding. Different decisions result
in different protocol properties.
Client authentication protocols may take additional safeguards to protect against
MitM. For example, in a newer version of the EAP AKA specification [4], the au-
thentication response must include RES as well as a message authentication code
on RES. Thus the attack described in Figure 4 is no longer possible. However, the
MitM can still pretend to be a backend server towards the victim. Therefore, if

mixed mode usage is unavoidable, then ultimately the tunnelling protocols have
to be fixed.
As we mentioned already, the problem is not limited to EAP only. For example,
HTTP Digest AKA specification [19] effectively uses the HTTP authentication
protocol [11] as a framework. The standard combination of HTTP authentication
with TLS is thus rendered insecure when the underlying HTTP authentication is
HTTP Digest AKA, despite the fact that HTTP Digest AKA is a secure protocol
providing mutual authentication and strong session key agreement.

Acknowledgments:
We thank Henry Haverinen for many interesting and useful discussions on this
and other related topics. We also thank Jan-Erik Ekberg, Dan Forsberg, Pasi
Eronen, Philip Ginzboorg, Tao Haukka, David Jablon, Hugo Krawczyk, Jose
Puthenkulam, Jarno Rajahalme, Heikki Riittinen and the participants of the IST-
SHAMAN project for discussions and valuable feedback on our ideas.

References

1. Bernard Aboba. Review of man-in-the-middle problem statement draft. Mes-
sage to IETF saag mailing list, January 2003.http://jis.mit.edu/
pipermail/saag/2003q1/000684.html .

2. H. Andersson, S. Josefsson, Glen Zorn, Dan Simon, and Ashwin Palekar.
Protected EAP Protocol (PEAP), September 2002. IETF personal draft
draft-josefsson-pppext-eap-tls-eap-05.txt .

3. J. Arkko and H. Haverinen. EAP AKA Authentication, June 2002. IETF
personal draftdraft-arkko-pppext-eap-aka-04.txt .

4. J. Arkko and H. Haverinen. EAP AKA Authentication, January 2003. IETF
personal draftdraft-arkko-pppext-eap-aka-08.txt .

5. N. Asokan, Valtteri Niemi, and Kaisa Nyberg. Man-in-the-middle in tun-
neled authentication protocols. Technical Report 2002/163, IACR ePrint
archive, October 2002.http://eprint.iacr.org/2002/163/ .

6. L. Blunk, J. Vollbrecht, and Bernard Aboba. Extensible Authentication Pro-
tocol (EAP), October 2002. IETFpppextworking group draftdraft-
ietf-pppext-rfc2284bis-07.txt .

7. Adrian Buckley, Prasanna Satarasinghe, Vladmir Alperovich, Jose
Puthenkulam, Jesse Walker, and Victor Lortz. EAP SIM GMM Authenti-
cation, August 2002. IETF personal draftdraft-buckley-pppext-
eap-sim-gmm-00.txt .

8. Pat Calhoun et al. Diameter Base Protocol, December 2002. IETFaaa
working group draftdraft-ietf-aaa-diameter-17.txt .

9. T. Dierks and C. Allen. The TLS Protocol Version 1.0, January 1999. IETF
RFC 2246.

10. Charlie Kaufman (Editor). Internet Key Exchange (IKEv2) Protocol, Febru-
ary 2003. IETFipsecworking group draftdraft-ietf-ipsec-ikev2-
05.txt .

11. J. Franks et al. HTTP Authentication: Basic and Digest Access Authentica-
tion, June 1999. IETF RFC 2617.

12. Paul Funk and Simon Blake-Wilson. EAP Tunneled TLS Authentication
Protocol (EAP-TTLS), February 2002. IETFpppextworking group draft
draft-ietf-pppext-eap-ttls-01.txt (expired).

13. Dan Harkins, Derrel Piper, and Paul Hoffman. Secure Legacy Authentication
(SLA) for IKEv2, December 2002. IETF personal draftdraft-hoffman-
sla-00.txt .

14. H. Haverinen and J. Salowey. EAP SIM Authentication, October 2002. IETF
personal draftdraft-haverinen-pppext-eap-sim-06.txt .

15. S. Josefsson, A. Palekar, D. Simon, and G. Zorn. Protected EAP Pro-
tocol (PEAP), March 2003. IETF personal draftdraft-josefsson-
pppext-eap-tls-eap-06.txt .

16. Heikki Kaaranen, Siam̈ak Naghian, Lauri Laitinen, Ari Ahtiainen, and Valt-
teri Niemi. UMTS Networks: Architecture, Mobility and Services. John Wi-
ley & Sons, 2001.

17. J. Vollbrecht L. Blunk. PPP Extensible Authentication Protocol (EAP),
March 1998. IETF RFC 2284.

18. Catherine Meadows. Formal methods for cryptographic protocol analysis:
emerging issues and trends.IEEE Journal on Selected Areas in Communi-
cations, 21(1):44–54, January 2003.

19. Aki Niemi, Jari Arkko, and Vesa Torvinen. Hypertext transfer protocol (http)
digest authentication using authentication and key agreement (aka). IETF
RFC 3310, September 2002.

20. Yoshihiro Ohba, Shinichi Baba, and Subir Das. PANA over TLS (POTLS),
September 2002. IETF personal draftdraft-ohba-pana-potls-
00.txt .

21. Jose Puthenkulam, Victor Lortz, Ashwin Palekar, Dan Simon, and Bernard
Aboba. The compound authentication binding problem, March 2003. IETF
personal draftdraft-puthenkulam-eap-binding-02.txt .

22. C. Righney et al. Remote Authentication Dial In User Service (RADIUS),
June 2000. IETF RFC 2865.

23. Y. Sheffer, H. Krawczyk, and Bernard Aboba. PIC, A Pre-IKE Creden-
tial Provisioning Protocol, October 2002. IETFipsra working group draft
draft-ietf-ipsra-pic-06.txt .

24. IETF IPsec working group. Secure legacy authentication for IKEv2. Discus-
sion thread on the IPSec mailing list.http://www.vpnc.org/ietf-
ipsec/mail-archive/threads.html#02763 .

