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My research interests

Systems Security and Privacy

AI and Security/Privacy
• How to use AI to improve security/privacy solutions
• How to improve security/privacy of AI-based systems

Platform security
• How to design/use hardware assistance to secure software?

https://ssg-research.github.io/
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https://ssg-research.github.io/mlsec/
https://ssg-research.github.io/platsec/
https://ssg-research.github.io/
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Platform security research

Hardware assisted trusted execution environments (TEEs)

Novel hardware security mechanisms
• HardScope (DAC 2019, https://arxiv.org/abs/1705.10295) , BliMe (NDSS 2024, HOST 2024, https://ssg-research.github.io/platsec/blime)

Novel uses of deployed hardware security mechanisms
• PACStack (Usenix SEC 2021, https://arxiv.org/abs/1905.10242)  and PARTS (Usenix SEC 2019, https://arxiv.org/abs/1811.09189), 

Deterministic MTE tagging (https://arxiv.org/abs/2204.03781) 
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CCS 2019 keynote[1] https://youtu.be/hHYoGn5PSl4 2022 book https://ssg.aalto.fi/publications/hardware-platform-security-for-mobile-devices/

https://ssg-research.github.io/platsec/

https://arxiv.org/abs/1705.10295
https://ssg-research.github.io/platsec/blime
https://arxiv.org/abs/1905.10242
https://arxiv.org/abs/1811.09189
https://arxiv.org/abs/2204.03781
https://youtu.be/hHYoGn5PSl4
https://ssg.aalto.fi/publications/hardware-platform-security-for-mobile-devices/
https://ssg-research.github.io/platsec/
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AI will be 
pervasive

https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-market-100114

https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-market-100114
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https://www.forbes.com/sites/nicolemartin1/2019/10/18/how-artifical-intelligence-is-advancing-
precision-medicine/#2f720a79a4d5
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https://www.zdnet.com/article/ai-is-changing-everything-about-cybersecurity-for-better-and-for-worse-heres-what-you-need-to-know/

https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-
experimented-with-predictive-policing-software

https://www.forbes.com/sites/falonfatemi/2019/10/31/how-ai-is-uprooting-recruiting/

https://www.forbes.com/sites/nicolemartin1/2019/10/18/how-artifical-intelligence-is-advancing-precision-medicine/#2f720a79a4d5
https://www.forbes.com/sites/nicolemartin1/2019/10/18/how-artifical-intelligence-is-advancing-precision-medicine/#2f720a79a4d5
https://www.zdnet.com/article/ai-is-changing-everything-about-cybersecurity-for-better-and-for-worse-heres-what-you-need-to-know/
https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-experimented-with-predictive-policing-software
https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-experimented-with-predictive-policing-software
https://www.forbes.com/sites/falonfatemi/2019/10/31/how-ai-is-uprooting-recruiting/
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Challenges in making AI trustworthy

Security concerns

Privacy concerns

[Other concerns: fairness, explainability, alignment]
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Which class is this?
School bus

Which class is this?
Ostrich

Szegedy et al. – Intriguing Properties of Neural Networks, ICLR ‘14 (https://arxiv.org/abs/1312.6199v4)

+ 0.1⋅ =

Evading machine learning models
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https://arxiv.org/abs/1312.6199v4
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Which class is this?
Cat

Which class is this?
Desktop computer

Athalye et al. – Synthesizing Robust Adversarial Examples, ICML ‘2019 (https://blog.openai.com/robust-adversarial-inputs/)
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https://blog.openai.com/robust-adversarial-inputs/


1111Zhang et al. – DolphinAttack: Inaudible Voice Commands, ACM CCS ‘17 (https://arxiv.org/abs/1708.09537) 

https://arxiv.org/abs/1708.09537
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Machine Learning pipeline

Data owners

ML 
model Client

Inference 
service 
provider 

API
Dataset

Where is the adversary? What is its target?

12

Model Trainer

Trainer

3rd party libs
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TrainerDataset

3rd party libs

Model Trainer

Speed limit 
80km/h

Compromised input – Model integrity

Data owners

ML 
model

Inference 
service 
provider 

API

Madry et al. – Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR ‘18 (https://arxiv.org/abs/1706.06083)
Carlini & Wagner. – Towards Evaluating the Robustness of Neural Networks, IEEE S&P ‘17 (https://arxiv.org/abs/1608.04644)

Evade model

ML 
model Client

https://www.wired.com/story/ai-adversarial-attacks/
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https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1608.04644
https://www.wired.com/story/ai-adversarial-attacks/
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Trainer

3rd party libs

Model Trainer

Malicious client – Training data privacy

Data owners

Carlini et al. – Membership Inference Attacks From First Principles, IEEE S&P ’22 (https://arxiv.org/abs/2112.03570)
Jayaram & Evans – Are Attribute Inference Attacks Just Imputation?, ACM CCS '22 (https://arxiv.org/abs/2209.01292)
Carlini et al. – Extracting Training Data from Large Language Models, USENIX SEC '21 (https://arxiv.org/abs/2012.07805)
Suri et al. – Dissecting Distribution Inference, SaTML '23 (https://arxiv.org/abs/2212.07591)

Invert model, infer membership

Dataset

Inference

ML 
model

Inference 
service 
provider 

API Client
ML 

model

Leaked Data

https://vpnoverview.com/news/researchers-trick-
ai-models-into-leaking-sensitive-training-data/
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https://arxiv.org/abs/2112.03570
https://arxiv.org/abs/2209.01292
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2212.07591
https://vpnoverview.com/news/researchers-trick-ai-models-into-leaking-sensitive-training-data/
https://vpnoverview.com/news/researchers-trick-ai-models-into-leaking-sensitive-training-data/
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Model Trainer

Compromised toolchain – Training data privacy

Data owners

ML 
model

Inference 
service 
provider 

API Client

Song et al. – Machine Learning models that remember too much, ACM CCS ‘17 (https://arxiv.org/abs/1709.07886)
Bagdasararyan & Shmatikov – Blind Backdoors in Deep Learning Models, USENIX SEC ‘21 (https://arxiv.org/abs/2005.03823)

Crafted 
query

Infringe on privacy

ML 
model𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Dataset
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Leaked Data

Trainer

3rd party libs

https://arxiv.org/abs/1709.07886
https://arxiv.org/abs/2005.03823
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Dataset

3rd party libs

Model Trainer

Malicious inference service – Private inference

Data owners

ML 
model

Inference 
service 
provider 

API Client X

Malmi and Weber – You are what apps you use Demographic prediction based on user's apps, ICWSM ‘16 (https://arxiv.org/abs/1603.00059)
Liu et al. – Oblivious Neural Network Predictions via MiniONN Transformations, ACM CCS ‘17 (https://ssg.aalto.fi/research/projects/mlsec/ppml/)
Zhang et al. – Secure Transformer Inference Made Non-interactive, NDSS '25 (https://www.ndss-symposium.org/wp-content/uploads/2025-868-paper.pdf)

Database

Is this app 
malicious? 

17

Trainer

Misuse client input/ouput

Add: “X uses app”

https://arxiv.org/abs/1603.00059
https://ssg.aalto.fi/research/projects/mlsec/ppml/
https://www.ndss-symposium.org/wp-content/uploads/2025-868-paper.pdf
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3rd party libs

Malicious data owner – Model integrity

Data owners

Analyst

ML 
model

Inference 
service 
provider 

API Client

Gu et al. – BadNets: Evaluating Backdooring Attacks on Deep Neural Networks, IEEE Access ‘19 (https://ieeexplore.ieee.org/document/8685687)
Li et al. – Anti-Backdoor Learning: Training Clean Models on Poisoned Data, NeurIPS ‘21 (https://arxiv.org/abs/2110.11571)

Dataset ML 
model

Influence ML model (model poisoning)

https://www.bbc.com/news/technology-35902104
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Trainer

https://ieeexplore.ieee.org/document/8685687
https://arxiv.org/abs/2110.11571
https://www.bbc.com/news/technology-35902104
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Dataset

3rd party libs

Trainer

Malicious client – Model confidentiality

Data owners

Analyst

ML 
model

Inference 
service 
provider 

API

Tramer et al. – Stealing ML models via prediction APIs, Usenix SEC ‘16 (https://arxiv.org/abs/1609.02943)
Juuti et al. – PRADA: Protecting against DNN Model Stealing Attacks, Euro S&P ‘19 (https://arxiv.org/abs/1805.02628)
Carlini et al. – Stealing part of a production language model, ICML ‘24 (https://arxiv.org/abs/2403.06634) 

Client

Extract/steal model

ML 
model

Stolen
model

https://theconversation.com/openai-says-deepseek-
inappropriately-copied-chatgpt-but-its-facing-copyright-
claims-too-248863
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https://arxiv.org/abs/1609.02943
https://arxiv.org/abs/1805.02628
https://arxiv.org/abs/2403.06634
https://theconversation.com/openai-says-deepseek-inappropriately-copied-chatgpt-but-its-facing-copyright-claims-too-248863
https://theconversation.com/openai-says-deepseek-inappropriately-copied-chatgpt-but-its-facing-copyright-claims-too-248863
https://theconversation.com/openai-says-deepseek-inappropriately-copied-chatgpt-but-its-facing-copyright-claims-too-248863
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Towards trustworthy AI

Secure, privacy-preserving, …

20Kumar et al. – Adversarial Machine Learning – Industry Perspectives, IEEE SPW ‘20 (https://arxiv.org/abs/2002.05646)

https://arxiv.org/abs/2002.05646
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Unintended interactions between defenses and risks
Prior work explored defenses to mitigate specific risks
• Defenses typically evaluated only vs. those specific risks they protect against

But practitioners need to deploy multiple defenses simultaneously
• Can two defenses interact negatively with each other?[1]

• Does a defense exacerbate or ameliorate some other (unrelated) risk?[2]

Conjecture: overfitting and memorization are influence defenses and risks[2][3]

• Effective defenses may induce, reduce or rely on overfitting or memorization
• Risks tend to exploit overfitting or memorization
• Underlying factors that influence memorization/overfitting can be identified

Recently built a toolkit, Amulet, for comparative evaluation of attacks & defenses[4]

[1] Szyller and Asokan – Conflicting Interactions Among Protections Mechanisms for Machine Learning Models, AAAI ‘23 (https://arxiv.org/abs/2207.01991)
[2] Duddu, Szyller, and Asokan - SoK: Unintended Interactions among Machine Learning Defenses and Risks, IEEE S&P ‘24 (https://arxiv.org/abs/2312.04542)
[3] Blog article: https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
[4] Amulet repo: https://github.com/ssg-research/amulet 21

Distinguished Paper Award

https://arxiv.org/abs/2207.01991
https://arxiv.org/abs/2312.04542
https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
https://github.com/ssg-research/amulet
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https://www.bbc.com/news/technology-
54234822?fbclid=IwAR1T41_HR6lIuMKGRJbJdDrdpKdywhPB
Ai5mhQSdzs0QLDso41T-SR3wJfs

Is malicious adversarial behaviour the only concern?

https://www.technologyreview.com/2019/01/21/137783/algorithms-criminal-justice-ai /

https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-
algorithms-racist-dismantled-machine-learning-bias-criminal-justice/
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https://www.bbc.com/news/technology-54234822?fbclid=IwAR1T41_HR6lIuMKGRJbJdDrdpKdywhPBAi5mhQSdzs0QLDso41T-SR3wJfs
https://www.bbc.com/news/technology-54234822?fbclid=IwAR1T41_HR6lIuMKGRJbJdDrdpKdywhPBAi5mhQSdzs0QLDso41T-SR3wJfs
https://www.bbc.com/news/technology-54234822?fbclid=IwAR1T41_HR6lIuMKGRJbJdDrdpKdywhPBAi5mhQSdzs0QLDso41T-SR3wJfs
https://www.technologyreview.com/2019/01/21/137783/algorithms-criminal-justice-ai
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/
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Measures of accuracy are flawed, too

https://twitter.com/_jsimonovski/status/1307542747197239296

https://twitter.com/TwitterComms/status/1307739940424359936

https://blog.twitter.com/official/en_us/topics/product/2020/transparency
-image-cropping.html
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https://twitter.com/_jsimonovski/status/1307542747197239296
https://twitter.com/TwitterComms/status/1307739940424359936
https://blog.twitter.com/official/en_us/topics/product/2020/transparency-image-cropping.html
https://blog.twitter.com/official/en_us/topics/product/2020/transparency-image-cropping.html
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Other AI trustworthiness concerns

Unaligned AI

AI-enabled fraud
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https://xkcd.com/1613/

https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/

https://en.wikipedia.org/wiki/AI_alignment

https://xkcd.com/1613/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://en.wikipedia.org/wiki/AI_alignment
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Takeaways

Trustworthy AI-based systems must address security & privacy
Active research topic

Other related concerns: fairness, explainability, alignment, …

AI-enabled fraud is a growing concern

Our research topics

ML security/privacy:
ML ownership resolution, Conflicting ML defenses, ML property attestation, robust concept removal in gen AI

Platform security: 
hardware-assisted run-time security, secure outsourced computing

Open (postdoc, grad student) positions to help lead our work: ML security/privacy, platform security
https://asokan.org/asokan/research/SecureSystems-open-positions-Jan2024.php
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https://ssg-research.github.io/mlsec/
https://ssg-research.github.io/mlsec/modelExtDef
https://ssg-research.github.io/mlsec/interactions
https://ssg-research.github.io/mlsec/mlattestation
https://ssg-research.github.io/mlsec/conceptfilter
https://ssg-research.github.io/platsec/
https://ssg.aalto.fi/research/projects/harp/
https://ssg-research.github.io/platsec/blime
https://asokan.org/asokan/research/SecureSystems-open-positions-Jan2024.php
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