Remote Attestation

Building trust in things you can’t see

N. Asokan asokan@acm.org
Andrew Paverd andrew.paverd@ieee.org
Acknowledgements

(including co-authors of the presenters on papers cited in this tutorial)

Tigist Abera
Ferdinand Brasser
Lucas Davi
Ghada Dessouky
Jan-Erik Ekberg
Kari Kostiainen
Ahmad Ibrahim
Patrick Koeberl

Pekka Laitinen
Thomas Nyman
Ahmad-Reza Sadeghi
Matthias Schunert
Sandeep Tamrakar
Gene Tsudik
Christian Wachsmann
Shaza Zeitouni
Outline

• Remote Attestation in Principle
 – What is remote attestation?
 – What technologies have been proposed?

• Break

• Remote Attestation in Practice
 – What technologies are being used?
 – What challenges remain?
Motivating Example
Motivating Example: IoT

The following message is received:

```json
{
    "name": temperature,
    "value": 23.5,
    "units": Celsius,
    "timestamp": 1430905326.2
}
```

What does it mean?
Motivating Example: IoT

Network adversary: read, modify, falsify communication
Motivating Example: IoT

The following message is received over an authenticated, integrity-protected communication channel:

```
{
    "name": "temperature",
    "value": 23.5,
    "units": "Celsius",
    "timestamp": 1430905326.2
}
```

What does it mean?
Motivating Example: IoT

Network adversary: read, modify, falsify communication
- authenticated, integrity-protected communication

Malware: extract secrets, change state, modify behaviour

Physical adversary: has physical access to device

{ "name": "temperature", "value": 23.5, "units": "Celsius", "timestamp": 1430905326.2 }
IoT Malware

How can we detect remote malware infestations?

Network adversary: read, modify, falsify communication
- authenticated, integrity-protected communication

Malware: extract secrets, change state, modify behaviour

Physical adversary: has physical access to device
Remote Attestation in Principle
Remote Attestation in Principle

Verifier ascertains current state and/or behaviour of prover.

What are the security requirements?
1. Authenticity
 - representation of the real state of the system
Attestation Requirements

1. Authenticity
 - representation of the real state of the system

2. “Freshness”
 - representation of the current state
Trusted Platform Module (TPM)
Authenticated Boot

- Measure and record booted components ("state")
- State can be:
 - bound to stored secrets - sealing
 - reported to external verifier - remote attestation

Authenticated boot
TPM Measurement Process

Platform Configuration Registers (PCRs) store aggregated platform “state” measurement

- Requires a root of trust for measurement (RTM)
- A given state reached ONLY via correct extension sequence
 - “PCR extension rule”

\[H_{\text{new}} = H(H_{\text{old}} | \text{new}) \]

- \(H_0 = 0 \)
- \(H_1 = H(0|m_1) \)
- \(H_2 = H(H(0|m_1) | m_2) \)
- \(H_3 = H(H(H(0|m_1) | m_2) | m_3) \)
TPM Attestation Protocol

- **Goal**: Check whether the prover is in a trustworthy state

Prover

Measure software state into PCRs

"TPM Quote" $r = \text{Sign}(SK_{\text{AIK}}, c \parallel \text{PCR-values})$

Verifier

Database of acceptable measurements

Attestation Protocol

Challenge c

Response r

Attestation Identity Key (AIK) is a unique keypair whose private key (SK_{AIK}) is **TPM-protected**
Drawbacks of TPM Attestation

- Needs additional hardware and software
- Not suitable for “anaemic” provers
- Covers only the initial loading of software
- Deals with only one prover and one verifier
- Database of acceptable measurements does not scale
Software-Based Attestation
Software-Based Attestation

- Assumes no hardware features to support attestation
 - No secrets on prover (e.g. no AIK)

\[r = H(\text{mem}, c) \]
Software-Based Attestation

- Pioneer system
 - compute time-optimal checksum of verifier

Software-Based Attestation: Summary

Limitations of timing side channels

– verifier must know exact hardware configuration
– difficult to prove time-optimality
– assumes “adversarial silence” during attestation
– limited to “one-hop” networks
 • requires authenticated channel (e.g. physical connection)
Hybrid Attestation
Hybrid Attestation

Minimal trust anchors: small changes to hardware
Hybrid Attestation: SMART

Minimal trust anchors: small changes to hardware

Read-only Verification code, secure key storage and atomicity of execution of Verification code

Hybrid Attestation: TrustLite & TyTAN

- Execution-Aware Memory Protection Unit (EA-MPU)
 - Access control based on memory request target and origin

Hybrid Attestation: Summary

• Advantages of hybrid approaches
 – Can be used across a network / over an untrusted channel
 – Verifier need not know prover’s exact hardware configuration

• Drawbacks
 – Needs additional hardware support
 – But minimal MCU trust anchors available commercially
 • TrustZone-M (ARM v9), …
Scalability of Attestation
Scalability of Attestation

• Attestation protocols usually assume a single prover
 – but IoT scenarios may involve groups of (many) provers
Scalability of Attestation

• Device *swarms*
 – dynamic topology: nodes move within swarm
 – dynamic membership: nodes join and leave the swarm

[Image of Smart factories and Smart vehicles]
Scalability of Attestation: SEDA

SEDA: Scalable Embedded Device Attestation
- More efficient than attesting each node individually
- Can use any type of measurement process

SEDA: Scalable Embedded Device Attestation. CCS ’15
Scalability: DARPA, SANA, LISA-s

DARPA: Device Attestation Resilient to Physical Attacks
 – Absence detection to detect physical attacks

SANA: Secure & Scalable Aggregate Network Attestation
 – Optimistic Aggregate Signature (OAS) scheme

LISA-s: Lightweight Swarm Attestation schemes
 – Quality of Swarm Attestation (QoSA): binary; count; list; full

Scalability of Attestation: Summary

• Different types of schemes proposed to:
 – improve security (e.g. physical attack resilience) or
 – improve performance (e.g. optimistic aggregation) or
 – improve in functionality (e.g. QoSA)

• What are the real-world application requirements?
Run-Time Attestation
Why Run-Time Attestation?

• Traditional attestation measures binaries at load time
• Cannot capture run-time attacks
 – return-oriented programming
 – control data attacks
Run-Time Attacks

1. **Invoke Function A**

 - **Prover**
 - **Verifier**
 - **Adversary**

 - **Function A** (i_1, i_2)
 - **Privileged code**
Control Flow Integrity (CFI)

1. if (cond)
2. then: block A
3. else: block B
4. block C
Run-Time Attacks Without Violating CFI

1. if (cond)
2. then: block_A
3. else: block_B
4. block_C
Control-Flow Attestation (C-FLAT)

Prover

1. Application A
2. Execute: $\text{Exec}(A(input))$
3. Measure executed
 - CFG Path: $p = H(\text{Exec}(A(input)))$
 - Compute $r = \text{Auth}(K, c \ || \ p)$
4. Challenge: c
5. Response: r

Verifier

1. Generate CFG: $\text{CFG}(A(*))$
2. Measure CFG Paths: $H(\text{CFG}(A(*)))$
3. Measurement Database
4. Verify r

C-FLAT: High-Level Idea

- Cumulative Hash Value: $H_j = H(H_i, N)$, where H_i is the previous hash result and N is the current node.

\[
\begin{align*}
H_1 &= H(0, N_1) \\
H_2 &= H(H_1, N_2) \\
H_3 &= H(H_1, N_3) \\
H_4 &= H(H_2, N_4) \text{ or } H_4 = H(H_3, N_4)
\end{align*}
\]

$\rho = H_4$
Handling Loops

- Different loop paths/iterations → many valid hash values
 - Our approach: treat loops as separate sub-graphs

\[
H_1 = H(0, N_1) \\
H_2 = H(0, N_2) \\
H_3 = H(H_2, N_3) \\
H_3' = H(H_2', N_3) \\
\ldots \\
H_4 = H(H_1, N_2) \\
H_5 = H(H_4, N_4) \\
\ldots \\
\]

\[
p = H_5, \langle H_1, \{H_3, \#H_3\} \rangle
\]

\(H_x\) different for each loop iteration

Proof-of-Concept Implementation

- Bare-metal prototype on Raspberry Pi 2
 - Single-purpose program instrumented using binary-rewriting
 - Runtime Monitor written in ARM assembler
 - Measurement Engine isolated in TrustZone-A Secure World

Source: https://github.com/control-flow-attestation/c-flat/blob/master/samples/syringe/syringe-auth.txt

Proof-of-Concept Implementation

Source code at https://github.com/control-flow-attestation/c-flat

LO-FAT

- Low-Overhead Control Flow Attestation in Hardware
 - Same security guarantees as C-FLAT
 - No performance overhead
 - No need for software instrumentation

- Utilizes existing IP building blocks
 - Branch filter used for detecting repeated paths
 - Hash engine for compressing attestation evidence

- Proof-of-concept implementation of main components
 - Targeting RISC-V SoC ("Pulpino")

Run-Time Attestation: Summary

• How can we scale control flow attestation?
 – Better ways to encode/aggregate measurements?
 – Faster/simpler purpose-built hash functions?
 – Attestation of properties rather than measurements?
 • From attestation to checking compliance with a (dynamic) policy?
Property-Based Attestation
Property-Based Attestation

Attest properties of interest instead of program binaries
• scalability of maintaining acceptable measurements

Use a trusted third party to convert from binary evidence to properties

Mid-Point Review: Attestation in Principle

- TPM attestation
- Software-based attestation
 - Pioneer
- Hybrid attestation
 - SMART
 - TrustLite & TyTAN
- Scalable attestation
 - SEDA
 - SANA & LISAs
- Control-Flow Attestation
 - C-FLAT
 - LO-FAT
- Property-based attestation

Which of these are:
1. “Paperware”
2. Testable
3. Deployed
A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: "What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise." The scientist gave a superior smile before replying, "What is the tortoise standing on?" "You're very clever, young man, very clever," said the old lady. "But it's tortoises all the way down!"

- Stephen Hawking, in A Brief History of Time
Remote Attestation in Practice
TPM Attestation

• Where are TPMs used?

• Where is TPM attestation used?

• Main challenge: verifier database scalability
 – Very large number of software packages
 – Frequently changing due to updates
 – Therefore: very hard to maintain whitelists

• Other challenges?
Property-Based Attestation in MirrorLink

- MirrorLink allows use of smartphone services in vehicles
- Car head-unit must enforce driver distraction regulations

http://www.mirrorlink.com

Content Attestation in MirrorLink

- Head unit only allows some types of content while driving
 - Needs to know what content it is asked to render
- **Content Attestation**
 - Defined using TPM structures (part of MirrorLink standard)
 - Initially implemented using On-board Credentials (an early TEE)

MirrorLink Data Attestation

Privacy in Attestation
Privacy in TPM Attestation

- (Recall) Prover provides **TPM-signed quotes** to verifiers

See also [Intel Pentium III Processor Serial Number controversy](https://en.wikipedia.org/wiki/Intel_Pentium_III_Processor_Serial_Number_controversy) (1999)
Privacy in TPM Attestation

• Solution: use different attestation key pairs

 – **Endorsement Key (EK)**
 • One EK per TPM
 • Certified by manufacturer

 \[\text{Used to prove this is a real TPM}\]

 – **Attestation Identity Key (AIK)**
 • (Virtually) unlimited number of AIKs
 • Certified by a Privacy CA or through Direct Anonymous Attestation (DAA)

 \[\text{Used during attestation}\]
Privacy Certificate Authority (PCA)
Privacy Certificate Authority (PCA)

Verifier 1

From: Clark Kent
Sign(SK_{AIK1}, PCRs),
Cert(PCA, PK_{AIK1})

Verifier 2

From: Superman
Sign(SK_{AIK2}, PCRs),
Cert(PCA, PK_{AIK2})

Prover

TPM1

Compromise

Collude
Direct Anonymous Attestation

• Mechanism of certifying AIKs without a trusted third party

• Based on group signature schemes
 – Secure in random oracle model with strong RSA and decisional Diffie-Hellman assumptions
 – Prover controls linkability between signatures
 – Revocation of anonymity intentionally not possible

• Rogue TPMs can be excluded only if private key is known

Direct Anonymous Attestation

DAA_join: Protocol between TPM and DAA issuer (e.g. manufacturer) through which TPM obtains a DAA key.

DAA_sign: TPM signs an AIK using its DAA key.

DAA_verify: Protocol through which TPM proves to a verifier that it has a valid DAA signature on AIK (without revealing DAA key).

Privacy in TPM Attestation

• (Recall) Prover provides TPM-signed quotes along with the full list of executed software to verifiers

Concern 1: Infer private information from installed apps
 – Possibility for profiling/discrimination

Concern 2: Track users through “software fingerprints”
 – Negates use of DAA or Privacy CA
Attestation in Trusted Execution Environments (TEEs)
Intel Software Guard Extensions (SGX)

Objective
- Protect a small amount of code and data against all other software (including the OS)

Mechanism
- Processor-enforced isolated execution environment: enclave

Enclave features
- Secure storage (sealing)
- Secure provisioning (remote attestation)
Intel Software Guard Extensions (SGX)

- Enclave runs in user process
- Enclave memory encrypted before leaving CPU boundary
- Ensures confidentiality and integrity of enclave data

F. McKeen, et al. *Innovative Instructions and Software Model for Isolated Execution*, HASP 2013
SGX Remote Attestation

• Verifier database scalability
 – Only enclave code and configuration are attested

• Privacy
 – Limited amount of code attested
 – Enhanced Privacy ID (EPID)
Enhanced Privacy ID (EPID)

A DAA scheme with enhanced revocation capabilities

- Same privacy guarantees as DAA
 - Also assumes random oracle model with strong RSA and decisional Diffie-Hellman assumptions

- Improved revocation capabilities
 - Revocation possible even if private key not publically known

SGX *Local Attestation*

- Enclave1 sending message to Enclave2
- Authenticated by CPU

![Diagram of SGX Local Attestation]

I. Anati, S. Gueron, S. Johnson, V. Scarlata. Innovative Technology for CPU Based Attestation and Sealing, HASP 2013
SGX Remote Attestation

I. Anati, S. Gueron, S. Johnson, V. Scarlata. Innovative Technology for CPU Based Attestation and Sealing, HASP 2013
Kinibi on ARM TrustZone
Kinibi on ARM TrustZone

- Single hardware-enforced TrustZone TEE per platform

- Kinibi trusted OS:
 - manages trusted applications
 - isolates them from each other

S. Tamrakar, J-E Ekberg, P. Laitinen, *On Rehoming the Electronic ID to TEEs*, TrustCom 2015
Remote Attestation in Kinibi

ARM TrustZone hardware extensions

\[
m_{\text{attest}} : \text{Enc}(K_{\text{TEE}_i}, \text{UUID}_{\text{TA}}, h(\text{TA}), c, \ldots)
\]

S. Tamrakar, J-E Ekberg, P. Laitinen, *On Rehoming the Electronic ID to TEEs*, TrustCom 2015
Common use case: Key Attestation
Key Attestation

How to attest that a key is protected by hardware?
 – Must also prevent linkability between keys

• **TPM_CertifyKey** command
 – Non-migratable TPM key certified using AIK
 – Subject Key Attestation Evidence (SKAE) extension X.509 cert.
 – Now [supported by Windows Server](#) (Feb 2017)

• Using normal **SGX attestation**
 – Verifier checks that enclave generated key securely
Android Keystore Attestation

• Available from Android 7.0 (API level 24) onwards
 – But currently few devices with hardware-backed attestation

• Keystore produces an attestation certificate for key pair
 – Standard X.509, signed by on-device attestation key

• On-device attestation keys
 – Injected into device during manufacture
 – Signed by device manufacturer or Google
 – Injected in batches: “minimum 10,000 devices per key”
Summary: Attestation in Practice

• TPM-based Attestation

• MirrorLink Data Attestation Protocol

• Privacy in Attestation

• Attestation in TEEs
 – SGX
 – TrustZone

• Key Attestation
Open Challenges
Open Challenges

• Physical adversary
Open Challenges

- End-to-end attestation

Traditional attestation based on virtualized hardware (e.g. virtual TPM)

Software-based or Hybrid attestation

Traditional hardware-based attestation
Open Challenges

• Attestation Servers?
Open Challenges

• Attestation of the Cloud?
Conclusions

• Increasing need for remote attestation

• Various schemes proposed, developed, deployed

• Building deployable attestation schemes is challenging