
Hardware-assisted
run-time Protection
On balancing security and deployability
N. Asokan

http://asokan.org/asokan/
@nasokan

2

How to thwart run-time attacks?

Run-time attacks are now routine

Software defenses incur security vs. cost tradeoffs

Hardware-assisted defenses are attractive

3

Protect against run-time attacks
without incurring a significant

performance penalty

4

Hardware-assisted run-time protection

Two case studies:

• HardScope: minimal CPU extensions for hardware-assisted scope enforcement

• PARTS: Run-time safety using ARM Pointer Authentication

HardScope
Hardware-assisted Run-time Scope Enforcement
Thomas Nyman†, Ghada Dessouky‡, Shaza Zeitouni‡, Aaro Lehikoinen†, Andrew Paverd†, N. Asokan†,
Ahmad-Reza Sadeghi‡

†) Aalto University, ‡) Technische Universität Darmstadt

6

Motivation: Run-time Attacks

Memory corruption vulnerabilities in C / C++ can allow an attacker to access to:
• Control-data, e.g. return address stored on call stack (control-flow hijacking)
• Decision-making data, e.g. user id used for authorization decisions (data-oriented attack)
• Sensitive data, e.g. cryptographic keys (information leakage)

Access to unintended data

Compile-time variable visibility rules make references to unintended variables less likely
 Enforcing variable scope also at run-time would reduce potential of memory attacks

6

7

Challenges

Lexical scope only known at compile-time
• In C / C++, variable visibility information not available at run-time

Granularity of enforcement
• Effective compartmentalization requires fine granularity for subjects (code) and objects (data)

Context-sensitive access
• Same code may operate under different set of access rules depending on caller

Pervasiveness
• Efficiently mediate all memory accesses

7

Design

9

HardScope: High-level Idea

Instrument program during compilation to:
• Split code up into distinct execution contexts (common environment for function or block)
• Associate each execution context with storage regions, (data memory accessed)

Modify underlying hardware with HardScope instructions to:
• Accumulate rules for storage regions [new storage region instructions]
• Track changes in execution context [new scope block instructions]
• Track dynamic data flows [new data delegation instructions]
• Enforce accesses to storage regions [modified load / store instructions]

9

10

New Instructions

During run-time, 7 new instructions configure HardScope-hardware with access rules
• Scope Block instructions mark points of domain transitions, e.g. function call / return
• Storage Region (SR) instructions whitelist memory regions for current domain, e.g. stack frame
• Delegation instructions gives callee/caller access to SRs e.g. arguments, return values

10

Mnemonic Name Description

srdlg Storage Region DeLeGate Delegate existing SR to callee / caller
srdsub Storage Region Delegate SUBregion Delegate subregion to an existing SR

sradd Storage Region ADD
Set base and limit for new storage region

srdda Storage Region ADD (reverse operands)

sbent Scope Block ENter Mark transition into new domain
sbxit Scope Block eXIT Mark transition ouf of domain

srdel Storage Region DELete Revoke access to storage region

11

Storage Region Stack

Stack-oriented storage for accumulated access rules
• Stores the bounds of each used storage region

(e.g. stack variable, heap object, global variable)
• Frames created upon domain entry (sbenter push)
• Frames discarded upon domain exit (sbxit pop)

Actively enforced rules in topmost frame
• Memory accesses matched only against active rules
• Subsequent frame store inactive rules for inactive domains
• Function-level enforcement mirrors structure of call stack

Maintained in protected memory
• Rules only modifiable by HardScope instructions

11
base limit

SSRS in protected
memory

domain
n rules

domain
n-1 rules

domain
n-2 rules

12

base limit

Storage Region Stack Hardware Design

Active and delegated storage region rules stored in register banks
• Allows enforcement without slowing down loads / stores as active rules cached for fast access
• Cache management amortized over several instructions on execution context change

12

base limit

SSRS in
protected
memory

base limit base limit

Cache Active bank Spare bank

SRS Controller

13

Function-granularity compartmentalization

Functions separated into distinct execution contexts

13

Bss segment

Stack (grows down)

Heap (grows up)

Text segment

Data segment

strcpy stack frame

main stack frame

0xffffceb8

int main(int argc, char *argv[])
{

...
doit(argv[1]);

...

return 0;
}

void doit(char *str)
{

char buf[8];
char ptr = buf;

strcpy(buf, str);
puts(ptr);

}

void strcpy(char *str)
{
...

}

0xffffce98

doit stack frame

0xffffceac
0xffffceb8 (saved fp)frame pointer:

0xffffceb0
0x08048482 (saved ip)return address:

0xffffceb4
0xffffd18a (argv[1])arguments:

0xffffcea8
ptr:

buf:
0xffffcea4

0xffffcea0

0xffffcea0 (&buf)

0xffffce9c
0xffffcea0 (ptr)arguments:
0xffffd18a (str)

14

Return-state compartmentalization

Function prolog and epilog separated into own execution context

14

Bss segment

Stack (grows down)

Heap (grows up)

Text segment

Data segment

strcpy stack frame

main stack frame

0xffffceb8

int main(int argc, char *argv[])
{

...
doit(argv[1]);

...

return 0;
}

void doit(char *str)
{

char buf[8];
char ptr = buf;

strcpy(buf, str);
puts(ptr);

}

void strcpy(char *str)
{
...

}

0xffffce98

func stack frame

0xffffceac
0xffffceb8 (saved fp)frame pointer:

0xffffceb0
0x08048482 (saved ip)return address:

0xffffceb4
0xffffd18a (argv[1])arguments:

0xffffcea8
ptr:

buf:
0xffffcea4

0xffffcea0

0xffffcea0 (&buf)

0xffffce9c
0xffffcea0 (ptr)arguments:
0xffffd18a (str)

prolog

epilog

0xffffceb8 (saved fp)

0x08048482 (saved ip)

0xffffd18a (argv[1])

Implementation

16

Proof-of-Concept Implementation

16

Proof-of-Concept ISA extension for RISC-V processor
• Software simulation implemented for Spike ISA simulator
• Integrated with PULPino SoC on ZedBoard FPGA

GCC Plug-in for automatic HardScope instrumentation
• Function granularity enforcement for local, global, and

static variables, function arguments and return values

Only 3.2% performance overhead in CoreMark embedded benchmarks
• 11% binary size increase due to instrumentation
• 32 entries in register banks (CoreMark used only up to 23)
• 574 byte memory overhead*

*) Maximum SRS depth: 71 entries over 11 frames encoded using 64 bits per SR entry + 4 bits per frame for the number of entries

17

HardScope benefits

+ Adjustable granularity of enforcement
e.g. module-, function-, code-block- compartmentalization

+ Can provide resilience against multiple classes of attacks
e.g. ROP, DOP

17

18

HardScope limitations

• Currently only supports single-threaded C programs
Additions to hardware design needed to support concurrency

• Currently manual annotations needed to instrument dynamic data structures
Coarse-granularity enforcement can be provided via wrappers

- Assumes programs minimize variable scope and module interdependence
Programs without logical structure benefit less and consume more SRS resources

- SRS frame size fixed at synthesis time
Optimal frame size may be difficult to determine

18

19

Technical report & source code

HardScope: Thwarting DOP with Hardware-assisted Run-time Scope Enforcement
DAC 2019?(phew!)

Research report version available at https://arxiv.org/abs/1705.10295

Toolchain, emulator and code samples:
https://github.com/runtime-scope-enforcement/

19
https://arxiv.org/abs/1705.10295 https://github.com/runtime-scope-enforcement

https://arxiv.org/abs/1705.10295
https://github.com/runtime-scope-enforcement/
https://arxiv.org/abs/1705.10295
https://github.com/runtime-scope-enforcement

Towards Pointer Integrity
using ARM Pointer
Authentication
Hans Liljestrand†, Thomas Nyman†, Kui Wang‡, Carlos Chinea Perez‡, Jan-Erik Ekberg‡, N. Asokan†

†) Aalto University, ‡) Huawei Technologies

22

Pointer Integrity (PI): memory safety for pointers

Ensures that a pointer at use time is the
same as at creation time

• Code pointer integrity implies CFI
• CF attacks rely on pointer manipulation

• Data pointer integrity
• reduces data-only attack surface
• prevents all known Data-Oriented

Programming (DOP) attacks

function {
store return_address
…
…
… corrupt_address!
…
…
load return_address
verify integrity
return

}
PI

Kuznetsov et al. “Code-Pointer Integrity”, USENIX OSDI 2014

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-kuznetsov.pdf

23

Can PI be realized in practice?

Can we use ARM v8.3-A Pointer Authentication (PA)?

But, PA is vulnerable to pointer reuse!

Our work: Design PA-assisted Run-time Safety (PARTS)
• Return address signing ≈ backward-edge CFI
• Code pointer signing ≈ forward-edge CFI
• Data pointer signing ≈ data-flow integrity for pointers
• Mitigates pointer reuse with run-time type safety

ARM “Armv8-A architecture: 2016 additions”, 2016

https://community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions

24

ARM 8.3-A Pointer Authentication
64-bit pointer

Pointer Authentication Codes (PAC)
• Tweakable MAC
• Set in unused bits of virtual address

Key/configuration set at higher privilege level

Instrument with new PAC handling instructions
• Opcode determines used key
• Operands set PA modifier (tweak value)

instructions Code-key Data-key Gen.-key
A B A B

pacia X
pacib X
pacda X
pacdb X
pacga X
autia X
autib X
autda X
autdb X

tweakable MAC PA-key

PACPAC address

address

modifier

25

Example: PA-based return address signing

func {

str LR
…

…
ldr LR

ret
}

STACK

verify PAC

PAC?PAC? LR address

generate PAC Code Key A

PACPAC LR address

LR address

Qualcomm “Pointer Authentication on ARMv8.3”, whitepaper 2017

pacia LR, SP

autia LR, SP PI

Function return address

Code Key A

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

26

func1 {
pacia LR, SP
str LR
…

func2 {
pacia LR, SP
str LR
…
ldr LR
autia LR, SP
ret

}

..ab08

..ab10

..ab18

..ab20

..ab28

..ab30

..ab38

..ab40

..ab48

..ab50

PA only approximates fully-precise pointer integrity
Adversary may re-use PACs

STACK

func1 stack frame

…
/* func1() */
brl %func1
…
/* func2() */
brl %func2
…

SP
func2 stack frame

Design

28

Hardening return address signing

Modifier: function-id + SP value
• Function-id assigned at compile-time
• Prevent cross-function return address reuse

Future additions
• Combine with SP randomization

Mashtizadeh et al. “Cryptographically Enforced Control Flow Integrity”, ACM CCS 2015

func {
mov Xm, SP
mov Xm, #f_id, #lsl_16
pacia LR, Xm
str LR
…
…
ldr LR
mov Xm, SP
mov Xm, #f_id, #lsl_16
autia LR, Xm
ret

}

http://iot.stanford.edu/pubs/mashtizadeh-ccfi-ccs15.pdf

29

Code pointer signing

Modifier: type-id
• Assigned at compile-time
• Based on LLVM ElementType

≈ function signature

Uses on-use authentication
• With combined auth+branch instr.

…
/* f_ptr = func; */
mov Xd, #func_address
mov Xm, #t_id
pacia Xd, Xm
…

…
/* f_ptr(); */
mov Xm, #t_id
lbraa Xd, Xm
…

PACed only on pointer creation!

Authenticated at use

30

Data pointer signing

Modifier: type-id
• Assigned at compile-time
• Based on IR ElementType

≈ data type

Uses on-load authentication
• always auth on load

…
/* data *ptr = &var; */
mov Xm, #type_id
pacda Xd, Xm
str Xd, #store_address
…

…
/* use(ptr); */
ldr Xd, #store_address
mov Xm, #type_id
autda Xd, Xm
…

PACed at store

Authenticated at load

31

Brute-forcing PACs

Wrong PAC causes process crash
• Recall: PAC keys reset on process start
• Probability p of guessing b-bit PAC

correctly after n tries:

• For b=16, p=0.5, n = 45425

Threading/pre-forking is a concern
• Commonly used: e.g., Android Zygote
• Key reset on live process infeasible
• Restarting siblings+parent disruptive
• Approach: Restart siblings+parent after

threshold number of crashes

𝟏𝟏 − 𝒑𝒑 = (𝟏𝟏 − 𝟐𝟐−𝒃𝒃)𝒏𝒏

Key reset does not offer significant gains at low p values

Implementation

33

PARTS implementation architecture

• LLVM based compile-time instrumentation
• Optimizer passes
• AArch64 backend specific changes

• Uses PA to protect:
• Return addresses on the stack
• Local, global, and static pointers
• Pointers in C structures

PARTS-Instrumented binary

LL
VM Optimizer

Backend

linker PARTSlib

PARTS

PARTS

Clang frontend

Source Code

34

Evaluation: nbench performance

Reasonable overhead (geom.mean)
• Combined return address and code pointer signing < 0.5%
• Data pointer signing ~19.5%

0.9

1

1.1

1.2

1.3

1.4

1.5

Numeric sort String sort Bitfield FP emulation Fourier Assignment Idea Huffman Neural net Lu decomposition

nbench-byte benchmark results

return address signing code pointer signing data pointer signing all enabled

35

arxiv.org/abs/1811.09189

Technical report & source code

PAC it up: Towards Pointer Integrity using ARM Pointer Authentication
accepted to USENIX Security 2019

Research report version available at arxiv.org/abs/1811.09189

Compiler and code samples (will appear at):
github.com/pointer-authentication

35

github.com/pointer-authentication

https://arxiv.org/abs/1811.09189
https://arxiv.org/abs/1811.09189
https://github.com/pointer-authentication
https://github.com/pointer-authentication

36

PARTS: next steps

• Threat surface: estimate prevalence of pointer reuse scenarios in real-world programs
• Performance: evaluate on real hardware
• Generality: extend to C++

• How to handle C++ class hierarchies?
• Can we protect C++ exception handling?
• Other C++ specific features?

• Extensions: (how) can we use PA towards achieving full memory safety?

37

HardScope vs. Pointer Authentication

Share the same high-level objective but take entirely different approaches

Enforce data-flows between fine-grained subjects by scope enforcement
vs

Secure data-flows by ensuring integrity of pointers

38

HardScope: Challenges to acceptance

Hardware changes (even minimal ones) pose a major hurdle

Backward compatibility vs security
• Dynamic (non-continuous) data structures, global pointers, …

Scalability vs. extent of problem
• For embedded domain: low #rules/domain, but are data-oriented attacks a real concern?

RISC-V vs. real deployment

39

https://ssg.aalto.fi/research/projects/harp

Usability Deployability/Cost

Security

Hardware-assisted run-time protection: the promise

Pointer Authentication is powerful
• What are other creative uses of PA?

Other hardware primitives in the pipeline
• Memory Tagging
• Branch Target Indication

https://ssg.aalto.fi/research/projects/harp

https://ssg.aalto.fi/research/projects/harp
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://ssg.aalto.fi/research/projects/harp

	Hardware-assisted �run-time Protection�On balancing security and deployability
	How to thwart run-time attacks?
	Slide Number 3
	Hardware-assisted run-time protection
	HardScope�Hardware-assisted Run-time Scope Enforcement
	Motivation: Run-time Attacks
	Challenges
	Design
	HardScope: High-level Idea
	New Instructions
	Storage Region Stack
	Storage Region Stack Hardware Design
	Function-granularity compartmentalization
	Return-state compartmentalization
	Implementation
	Proof-of-Concept Implementation
	HardScope benefits
	HardScope limitations
	Technical report & source code
	Towards Pointer Integrity using ARM Pointer Authentication
	Pointer Integrity (PI): memory safety for pointers
	Can PI be realized in practice?
	ARM 8.3-A Pointer Authentication
	Example: PA-based return address signing
	PA only approximates fully-precise pointer integrity
	Design
	Hardening return address signing
	Code pointer signing
	Data pointer signing
	Brute-forcing PACs
	Implementation
	PARTS implementation architecture
	Evaluation: nbench performance
	Technical report & source code
	PARTS: next steps
	HardScope vs. Pointer Authentication
	HardScope: Challenges to acceptance
	Hardware-assisted run-time protection: the promise

