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Abstract

Commerce over open networks like the Internet, sometimes referred to as electronic

commerce, is becoming more widespread. This makes it important to study, and solve

the security problems associated with electronic commerce. There are three prominent

characteristics of commerce which are relevant in this respect. First, the crux of a com-

mercial transaction is usually one or more exchanges of items of value. Second, players

in a commercial transaction do not necessarily trust each other fully. Thus, protecting

players from each other is as important as protecting them from outside attackers. Third,

commercial transactions have legal signi�cance. Therefore, it must be possible to gather

su�cient evidence during the transaction to enable correctly behaving players to win any

subsequent disputes.

This dissertation addresses the problem of fairness in electronic commerce. A system

that does not discriminate against a correctly behaving player is said to be fair. Several

protocols are proposed for performing exchanges fairly. The protocols are practical, and

provide a high degree of fairness. The basic approach optimises for the common case that

all players behave correctly. This is known as the optimistic approach. These protocols

attempt to guarantee fairness during a protocol run. This is known as strong fairness.

When strong fairness is not possible, one can fall back on gathering enough evidence so

that fairness can be restored later by initiating a dispute. This is known as weak fairness.

An analysis of the protocols leads to the conclusion that the exchange of generatable items

can be guaranteed to be strongly fair. Various techniques to add generatability to items,

including one technique which uses a cryptographic primitive called veri�able encryption,

are presented.

In the case of weak fairness, a subsequent dispute is necessary to restore fairness. In

general, disputes can occur even after a correctly concluded transaction. Non-repudiation

techniques are used to gather evidence that can be later used in disputes. A novel non-

repudiation technique called server-supported signatures is proposed.

The issue of handling disputes in electronic commerce is complex and hitherto not

well-understood. Some aspects of the problem, within the limited context of electronic

payment systems, are addressed. First, a uni�ed de�nition of electronic payment systems,

called the generic payment service is presented. Based on the generic payment service,

a uniform way to express payment dispute claims is proposed. The need for a coherent

framework for handling disputes in electronic payment systems is motivated.
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2 CHAPTER 1. INTRODUCTION

1.1 Electronic Commerce

In the last decade, the Internet has grown dramatically in terms of the number of users

as well as the types of services available. A notable new development is the ability to buy

and sell goods and services over the Internet. The term electronic commerce refers to such

commercial transactions carried out over open computer networks. The scope of electronic

commerce should cover most of the various commercial scenarios in today's physical

marketplaces. More importantly, electronic commerce research can enable functionality

that is not present in non-electronic forms of commerce.1 There are various reasons

for the growing popularity of electronic commerce: reducing overhead costs, improving

accessibility of services, providing new or improved services, and simply keeping up with

a changing world in order to maintain a competitive advantage. Replacing paper-based

processes with digital equivalents can reduce overhead costs: electronic cheques avoid

the cost of having to store, protect, and securely transport paper cheques. Electronic

commerce can enable new or better services: with appropriate hardware support, strong

cryptography can be used to construct hard-to-forge digital signatures, at low cost.

Regardless of the motivating factors, the increase in commerce over open networks

is reality. It is, therefore, important to study the security issues surrounding electronic

commerce and seek e�ective solutions. Commercial transactions involve multiple players.

Usually, the players mutually distrust one another. Protecting one legitimate player from

another is as important as protecting legitimate players from intruders. Commercial

transactions typically have legal signi�cance| it must be possible for a correctly behaving

player to gather su�cient evidence to win any subsequent disputes.

In 1995, the European Commission launched a research project called SEMPER (Se-

cure Electronic Market Place for EuRope) [Wai96] to design a framework to enable secure

electronic commerce. Several business scenarios were identi�ed in the initial SEMPER

deliverable [SEM96] including on-line purchase of goods, subscriptions, contract-signing,

and auctions. All of these scenarios can be built up as a sequence of exchanges. This is

the central premise on which the SEMPER architecture has been based. Frequently, but

not always, these exchanges involve a transfer of value, also called a payment.

Most of the attention of electronic commerce research so far has been focussed on

mechanisms for electronic payments. A large number of payment schemes with a wide

1Micropayment schemes [HSW96], which are cost-e�ective mechanisms for the repeated payment of
very small amounts of money, is an example of such functionality.
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range of security and other characteristics has been proposed over the last two decades.

Several practical electronic payment systems have been implemented and deployed in

recent years. However, payments rarely exist in a vacuum| usually one makes a payment

in exchange for something. A purchase is an exchange of a payment (or value) in return

for some goods.

1.2 An Example Scenario

To illustrate the issues more concretely, consider the following example scenario.

Alice wants to buy airline tickets for a forthcoming trip. There are several airlines

selling tickets on the Internet. After browsing around, Alice decides to take up a pro-

motional o�er by BobAir, o�ering a reduced price provided the payment is made before

January 12. The process of buying a ticket consists of two separate steps: ticket reserva-

tion, payment/delivery. Alice �rst sends a reservation request. BobAir reserves a place

and sends an acknowledgement.

Alice and BobAir do not necessarily trust each other. Consider the potential trouble

spots due to this distrust. After making a reservation, Alice may not come back to buy

the ticket. BobAir loses money as the seat remained empty. On the other hand, after

promising the seat to Alice, BobAir may have sold it to another traveller willing to pay

the full price, leaving Alice without a seat. In each case, one player su�ers a disadvantage

in spite of following the protocol correctly. We say that such a protocol is not fair.

Alice's reservation request and BobAir's acknowledgements can be made non-

repudiable by using, for example, digital signature techniques (for example, see [MvOV96,

Ch. 11]). Thus, having sent a reservation request, Alice cannot deny having made the

request. Similarly, having sent an acknowledgement, BobAir cannot deny having made

a reservation for Alice. But this does not solve the problem completely. Suppose Alice

sends a non-repudiable request �rst. If BobAir does not reply with an acknowledgement,

Alice faces a dilemma. If she takes her business elsewhere, she runs the risk of paying for

two seats; if she does not, she runs the risk of having no seat.

There are various possibilities for the next step. The most likely scenario using today's

technology is that payment is made electronically in return for a digital receipt, but the

actual ticket itself is delivered by non-digital means. However, eventually there will be

electronic versions of air-line tickets as well (presumably down-loadable into a portable

device). We will consider this possibility in our scenario. Alice used an \on-line ticket
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purchase" application to send the reservation request, and the subsequent purchase of

the ticket. BobAir used the server version of the same application.

Throughout the rest of this dissertation, we will come back to this example and its

variations to see how the proposed solutions help in avoiding the potential sources of

unfairness.

1.3 Fairness

When a system involves the participation of multiple, mutually distrustful, players, a

natural question is whether it meets the security requirements of all the players. A

system that does not discriminate against a correctly behaving player is said to be fair.

As long as a player behaves correctly, a fair system must ensure that other players will

not gain any advantage over the correctly behaving player. The concrete meaning of

fairness depends on what the protocol is intended to achieve. The notion of fairness is

well established in some real life processes like elections or auctions.

In the case of exchanges, the meaning of fairness is equally clear. Consider the case

of a payment for receipt. If the protocol requires Alice to send the payment �rst, it

is an obviously unfair protocol. In order to be able to win any subsequent dispute,

Alice requires that she be guaranteed to receive a receipt if the payment system has

transferred her money to BobAir; at the same time, BobAir requires that no receipt be

issued to Alice unless the money has been transferred. This is an instance of the generic

problem of fair exchange. In electronic commerce scenarios, one can �nd other instances

of exchange where fairness is a critical requirement: contract signing and certi�ed mail

are two examples. As with electronic payment systems, there has been some theoretical

work on protocols for fair exchange. However, unlike the case of payments, there has

been no practical systems for fair exchange with satisfactory security and performance

characteristics.

Ideally, a protocol will guarantee fairness to all players, provided they follow the

protocol correctly. But this may not always be possible or cost-e�ective. If some players

su�er a loss of fairness after running a protocol, it may still be possible to recover fairness

to them by starting a dispute. Such a protocol must ensure that su�cient evidence is

accumulated during a run to enable correctly behaving players to win subsequent disputes.

Even protocols that enable correctly behaving players to seemingly achieve strong fairness

at the end of a normal protocol run, may need to generate evidence during the run in order
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to retain fairness to these players during any subsequent disputes. The term \fairness"

has been used in other contexts in computer science. In Chapter 7, I provide a short

summary of various usages of the term.

1.4 Scope of Research

1.4.1 Focus

The focus of the research described in this dissertation is to study fairness in electronic

commerce. Since exchange protocols constitute a basic building block of electronic com-

merce, my primary emphasis is on investigating ways to guarantee fairness in exchange

protocols. My secondary emphasis is on supporting disputes, as a means of recovering,

as well as retaining fairness. In the interest of tractability, I limit myself to the problem

of handling disputes in electronic payment systems. An orthogonal emphasis is on gen-

erality. For example, my approach to specifying dispute claims is independent of speci�c

payment schemes, as it is based on the design of a generic payment service. The fair

exchange protocols I describe in Chapter 2 and Chapter 3 are generic; concrete instances

can be derived from them by making suitable assignments. The motivation for generality

is both practicality and security: it enables both implementation and security analysis to

be modular.

1.4.2 Outline of Dissertation

This dissertation is structured as follows. The problem of fair exchange is discussed in

Chapter 2, starting with contract signing as a concrete problem instance. The contract

signing protocol is then generalised into a protocol for the exchange of a large class of items

called forwardable items. The relationship between the type of item and the achievable

degree of fairness is also presented. This analysis leads to a generic fair exchange protocol

for a class of items called generatable items, presented in Chapter 3. Various techniques

for adding generatability to items are presented. In particular, veri�able encryption

techniques are proposed to make items generatable.

The �rst step in supporting disputes is the collection of evidence. Typically, non-

repudiation tokens constitute evidence about what happened in a transaction. In Chapter

4, a brief look at techniques for non-repudiation is followed by the presentation of a novel

signature scheme, called server-supported signatures (S3). S3 provides signature service

and has some additional properties that can make it useful in electronic commerce. The
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remainder of the dissertation focusses on handling disputes in payment systems. A simple

model of electronic payment systems is presented in Chapter 5 and used as the basis for

the design of a generic electronic payment service. A prototype of the generic electronic

payment service has been implemented as part of the SEMPER project. In Chapter

6, a language for expressing payment dispute claims is presented. This is intended as

the �rst step in designing a framework for dealing with disputes in payment systems.

Di�erent parties of a dispute may be required to prove or disprove certain statements

about an alleged past transaction. Receipts and other items of evidence generated during

a transaction will be used in such proofs. Chapter 7 closes the dissertation by summarising

the contributions made.



Chapter 2

Fair Exchange

7
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2.1 Introduction

The crux of a commercial transaction is usually an exchange of one item for another. We

can �nd various instances of the general exchange scenario in di�erent types of commercial

activity:

� in a purchase, a payment is exchanged for a receipt of some valuable item,

� in contract signing, each player exchanges a non-repudiable commitment to the

contract text in return for the other player's non-repudiable commitment to the

same contract text,

� in certi�ed mail, a message is exchanged for an acknowledgment of receipt, and

� in barter, an arbitrary item of value is exchanged for another item of value.

An important security requirement on exchanges is fairness. An exchange is fair

if at the end of the exchange, either each player receives the item it expects or neither

player receives any additional information about the other's item. In electronic commerce

scenarios, exchanges have to be carried out over insecure networks. An attacker can

gain control of the network or corrupt the systems used by the other player. Thus,

carefully designed exchange protocols are necessary to guarantee fairness. Typically these

protocols must also possess additional properties. For example, there may be subsequent

disputes about what was exchanged during the transaction even if the exchange itself

was completed fairly. In this case, su�cient evidence must be accumulated during the

exchange to support the resolution of any future disputes.

In this chapter, I will discuss the problem of fair exchange and present new \opti-

mistic" techniques for solving it. A de�nition of fair exchange and the properties required

are presented in Section 2.1.1, followed by a brief survey of related work in Section 2.1.2.

The idea of the optimistic approach is presented in Section 2.2. A protocol for solving

an instance of the fair exchange problem (contract signing) using this approach is also

presented. The issue of generic fair exchange protocols for exchanging arbitrary items

is discussed in Section 2.3. The relationship between the nature of the items and the

degree of fairness provided by the optimistic protocol is also discussed. Brief descriptions

of some optimised instantiations of the generic protocol are presented in Section 2.4.
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2.1.1 Requirements for Fair Exchange

P Q
Input : iP ; dQ;Q Input : iQ; dP ;P

 �
fair exchange
������������!

Output : Output :
iQ (desc(iQ) = dQ) iP (desc(iP ) = dP )

or

aborted aborted

Figure 2.1: A Successful Fair Exchange

We assume that there exists a function desc() that maps any exchangeable item to a

string describing it in \su�cient" detail. (For example, a signature may be described by

the message and the public key of the signer; a payment may be described by the payee,

value, and currency.) Figure 2.1 shows the inputs and outputs of each player during a

successful fair exchange. The inputs of P (Q) consist of an item iP (iQ) and a description

dQ(dP ) of the expected item. We formulate the following requirements in terms of one

player, P | i.e., assuming P behaves correctly. The requirements of the other player, Q,

can be stated similarly. P can consider a protocol run completed, when it is safe for P

to terminate (and take no further part in the protocol). A protocol should indicate the

points where it is completed. Any failures in the communication channel are subsumed

in the notion of a misbehaving peer.

� R1 - E�ectiveness: If Q also behaves correctly, and both P and Q do not want to

abandon the exchange, then when the protocol has completed, P has iQ such that

desc(iQ) = dQ.

� R2 - Fairness: Two notions of fairness are possible,

{ R2a - Strong Fairness: When the protocol has completed, either P has iQ

such that desc(iQ) = dQ, or Q has gained no additional information about iP ,

or

{ R2b - Weak Fairness: When the protocol has completed,

� either P has iQ such that desc(iQ) = dQ, or Q has gained no additional

information about iP ,
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� or P can prove to an arbiter that Q has received (or can still receive) iP

such that desc(iP ) = dP , without any further intervention from P.

� R3 - Timeliness: P can be sure that the protocol will be completed at a certain

point in time. At completion, the state of the exchange as of that point is either

�nal or any changes to the state will not degrade the level of fairness achieved by

P so far.1

� R4 - Non-repudiability: After an e�ective exchange (i.e., P has received iQ at

the end of the exchange), P will be able to prove

{ R4a - Non-repudiability of Origin: that iQ originated from Q, and

{ R4b - Non-repudiability of Receipt: that Q received iP .

Note that, in general, non-repudiability is not an integral requirement for fair ex-

change protocols. However, it is included here because it is useful in subsequent

disputes after a fair exchange (even a successful one). In Chapter 4, we will take

a closer look at non-repudiation techniques, and in Chapter 6, we investigate how

non-repudiation tokens can be used in disputes.

Some fair exchange protocols may also satisfy other desirable security properties

such as privacy and anonymity. On the other hand, depending on the context, non-

repudiability may not be required. It is also possible that several parties may want to

engage in a fair exchange. See [ASW96b] for a treatment of multi-party fair exchange.

In this dissertation, I limit myself to the two-party case.

2.1.2 Related Work

Previous work on fair exchange falls into two categories: third party protocols which make

use of a trusted, on-line third party, and gradual exchange protocols which gradually

increase the probability of correctness over several rounds of communication.

The third party protocols all require a trusted (to various degrees) third party. The

third party is on-line in that it is required to be actively involved in every exchange

transaction. The basic approach is simple: each player sends its item and the description

of the expected item to the trusted third party T; if the items match the expected

1For example, this implies that if P has already achieved strong fairness, any subsequent change in
state should not cause P to lose its fairness or even degrade it to weak fairness.
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descriptions, T forwards the items to the respective recipients; otherwise the exchange

is aborted. Several variants of the same basic idea have been reported [CTS95, ZG96,

DGLW96, FR97]. These protocols di�er in attributes like their message ows and required

degree of trust, but they all require a third party to be involved in each run of the

exchange protocol. There are two problems with this approach: the third party needs to

be trusted, and it must be on-line. These two problems exacerbate each other. The high

trust requirements tend to minimise the number of third parties that can be candidates for

providing the mediation service. The smaller the number of such third parties, the higher

the risk of their becoming bottlenecks. On the positive side, the third party approach can

be used to exchange arbitrary types of items (as long as they can be automatically veri�ed

against their descriptions), thereby covering all di�erent types of exchanges, including

those mentioned in Section 2.1.

The main goal of the gradual protocols is to achieve fairness without using an on-

line third party. One approach is called the gradual release of secrets. The exchange

protocol consists of many rounds of communication. In each round, each player releases

a small portion of its item. Each portion must be veri�able as a valid component of

the item. If a player detects misbehaviour, it stops the protocol run immediately. It is

easy to see that the e�ectiveness property is guaranteed. If the protocol run is aborted,

then each player can try to guess the remaining portions of their respective expected

items. Thus, assuming that the players have roughly equal computational capabilities,

and that portions of an item give no more information about the item itself, the strong

fairness property is guaranteed in a probabilistic sense. Several protocols of this type have

been proposed for contract signing and certi�ed mail [Blu83, EGL85, BT94]. The main

di�culties with this approach are the assumption of equal computational power (which

is unreasonable when an individual user with limited resources engages in an exchange

with a large organisation with substantial resources), and the extensive communication

requirements.

The second gradual approach is called the gradual increase of privileges. This approach

is useful only for contract signing [BOGMR90]. It does use a third party called the judge

who rules on the validity of contract. However, the judge is not involved during the

exchange itself. In every round, each player signs the contract specifying a probability

parameter p. Given this signature, the judge will, with probability p, rule the contract

valid. The value of p is gradually increased until both players end up with a fully binding

contract. If a player detects misbehaviour, it stops the protocol run immediately. At this
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point, each player has a signed contract that has roughly the same chance of being declared

valid. This protocol removes the assumption of comparable computational resources but

su�ers from the same extensive communication requirements, relies on the use of a trusted

third party in case of disputes, and, as noted by P�tzmann [P�95], fails to meet the

timeliness requirement.

2.2 The Optimistic Approach

As we saw, none of the approaches described in Section 2.1.2 is satisfactory: the gradual

protocols are not suitable for practical implementations due to their excessive communi-

cation requirements, while the third party protocols may result in bottlenecks and calls

for high levels of trust in the third party.

However, in an environment where most players behave correctly most of the time, we

can design e�cient protocols for fair exchange by optimising for this common case. We

will also rely on the use of a third party, but only in the case of an exception. The basic

idea is as follows. First, both players agree on what is to be exchanged and which third

party to use in case of an exception. This \agreement" is informal | it has no validity

outside the context of the protocol. Then, one player (called the \originator") takes the

risk of sending its item �rst, hoping that the other player will behave correctly and respond

with its item. If the other player responds as expected, the protocol ends successfully.

Otherwise, the originator contacts the third party to resolve the fair exchange. This is

known as the optimistic approach.

Optimistic protocols for the exchange of a payment for a receipt or goods were �rst

outlined by B�urk and P�tzmann in [BP90]. The contract signing protocol of Ben-Or

et al [BOGMR90] is also optimistic in nature. The optimistic approach is an obvious

approach to performing fair exchange using trusted third parties. My contributions are

twofold: I present detailed protocols and prove their properties with respect to the re-

quirements listed earlier, and I analyse the relationship between the nature of the items

being exchanged and the possible degrees of fairness.

A �rst attempt at designing detailed protocols for the optimistic fair exchange of

generic items, along with an analysis of their security was presented in [ASW96a,

ASW96b]. Independently Micali proposed similar protocols for certi�ed mail [Mic97].

However, all these proposals failed to meet the timeliness requirement unless strong as-

sumptions about the reliability of the communications channels are made. In both pro-
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tocols, one player takes the risk by sending its item �rst. Only this player (originator)

is allowed to invoke the third party. The other player (responder) cannot know the �nal

state of the exchange until the originator invokes the third party. In [ASW96a, ASW96b],

an overall time limit parameter was used to address this problem. The third party will

not resolve an exchange after the speci�ed time limit. However, this solution is not com-

pletely satisfactory because it is di�cult to choose the right value for this time limit. If

the time limit is too short, the originator may not be quick enough to start the recovery

on time. Failure to start the recovery within the time limit will destroy the fairness for

the originator, even if it is honest. Similarly, if the time limit is too long, the responder

may have to wait without knowing what happened. Worse still, if the responder happens

to crash during this time, it may not be able to prove later that it behaved correctly

otherwise.

In the rest of this section, I will describe the optimistic approach in detail and present

protocols which achieve the timeliness requirement in addition to being e�cient and

secure. The main highlight of the protocol is that at any time during a protocol run,

either player can unilaterally choose to force the protocol to complete, without losing

fairness.

As usual, ordinary players are not required to trust each other. But all players are

required to trust the third party to a certain extent. Naturally, it is desirable to minimise

this trust as much as possible. Making the third party veri�able (that is, if it misbehaves,

its victim(s) can prove the fact in a dispute) is one way of reducing this trust. We

introduce a new requirement which captures this property:

� R5 - Veri�ability of Third Party: Assuming that the third party T can be

forced to eventually send a valid reply to every request, the veri�ability of third

party property requires that if T misbehaves, resulting in the loss of fairness for P,

then P can prove the misbehaviour of T to an arbiter (or veri�er) in an external

dispute.

In other words, each of the other players has a weak fairness guarantee even in the case

of a misbehaving or corrupted third party.

2.2.1 Model

Two players O (the \Originator") and R (the \Recipient") want to engage in a fair

exchange. The originator is the player that starts the optimistic fair exchange protocol
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by sending the �rst message. Hereafter, I will use the labels O and R when we need to

distinguish between the originator and the responder. When there is no such need, we

will use the label P for one of the players, and the label Q for the peer of P.

A third player T is known to both O and R. We assume that communication channels

between any two players are con�dential, meaning that eavesdroppers will not be able

to determine the contents of messages travelling through these channels. Con�dential

channels can be implemented by encrypting messages for the recipient. We de�ne two

levels of quality for a communication channel.

De�nition 2.2.1 A communication channel between two correctly behaving players is

operational if the messages inserted into it by the sender are received by the recipient

within a known, constant (or constant factor) time interval.

A communication channel between two correctly behaving players is reliable if it is

guaranteed to be always operational. An attacker will not be able to delay any message in

a reliable channel, beyond the known upper bound.

A communication channel between two correctly behaving players is resilient if it is

normally operational but an attacker can succeed in delaying messages by an arbitrary,

but �nite amount of time. In other words, a message inserted into a resilient channel will

eventually be delivered.

We will normally make the weaker assumption that the channel between any player and

T is resilient. The resilient channel assumption leads to an asynchronous communica-

tion model: we can make no timing assumptions such as bounds on message delays, or

deviations between local clocks.

Normally, we make no assumptions about the communication channel between O and

R. The attacker may gain complete (and permanent) control of it. If either O or R is

dishonest or wants to abandon the fair exchange, it may choose not to respond to any

message, regardless of the quality of the communication channel used to send the message.

We assume that each player has the ability to compute and verify digital signatures

using some arbitrary digital signature scheme

� in which each player P has a signing key SP , and a corresponding veri�cation key

VP ,

� which has a signature algorithm sign such that, given a message m,

sign(m;SP ) = SigP (m), where SigP (m) is said to be a signature on message

m with key SP , and
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� which has a signature veri�cation algorithm verifySig such that, given a message m

and a claimed signature s on m, verifySig(m; s; VP ) evaluates to true if and only if

there exists a SigP (m) which is equal to s.

The veri�cation keys can be potentially anonymous | for example, if they are asso-

ciated with short-lived pseudonyms. We also assume that anyone who has SigP (m) also

has m. This is easily done by always appending m to the signature on m. Further, we

assume a collision-resistant one-way hash function h(). Intuitively, a one-way function

f() is a function such that given an input string x it is easy to compute f(x), but given a

randomly chosen y it is computationally infeasible to �nd an x0 such that f(x0) = y. A

one-way hash function is a one-way function h() that operates on arbitrary-length inputs

to produce a �xed length value. The term x is called a pre-image of h(x). A one-way

hash function h() is said to be collision-resistant if it is computationally infeasible to �nd

any two strings x and x0 such that h(x) = h(x0). The collision-resistance property also

implies that given y and x such that y = h(x), it is infeasible to �nd x0 6= x such that

h(x0) = y. This property is called second pre-image resistance. A number of e�cient and

allegedly one-way hash functions, such as SHA-1[NIS95], have been invented. We will en-

counter the use of collision resistant one-way hash functions throughout this dissertation.

Unless speci�ed otherwise, we will assume the use of a one-way hash function like SHA-1

with �xed length inputs.

The notations used for various functions and objects are summarised in Table 2.1.

(Some of the concepts are introduced later in the text.)

Notation Explanation

VP ,SP Veri�cation and signing keys of P
SigP (m) Message m signed with SP
verifySig() Signature veri�cation algorithm
h() Collision-resistant one-way hash function
EncP (m) Public-key encryption of message m recoverable only by P

Table 2.1: Notation Summary
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2.2.2 An Example: Contract Signing

First, we illustrate the optimistic approach by considering a two-party contract signing

scenario. In two-party contract signing, both players have initially agreed on some con-

tract text. A valid contract consists of non-repudiation tokens on the contract text by

each player. A fair contract signing protocol must ensure that either both players end up

with valid contracts or neither does.

Protocol Description

O and R want to sign a contract so that they both expect to end up with each other's

non-repudiation token on a previously agreed contractual text. The optimistic contract

signing protocol has three sub-protocols: exchange, abort, and resolve. In the normal

case, only protocol exchange is executed. The other two are used only if one of the two

players decides to forcibly complete the protocol (presumably because it has decided that

something has gone wrong). This is a non-deterministic choice made locally by a player.

Note that, since our model is asynchronous, a player deciding something has gone wrong

does not necessarily imply that any other player has behaved incorrectly. The protocol is

shown in Figure 2.2. Places where a player can decide to give up and forcibly complete

the protocol are marked with the tag \give up?". For example, \give up?: abort"

means \if the player decides to give up, it should run protocol abort." The \give up?"

decisions are meant to be taken during an interval of time; in Figure 2.2, the positions of

the \give up?" decisions indicate the typical point of the interval concerned.

Step 1. We assume that O and R have already agreed on the text of the contract and then

run protocol exchange with the contract text as input. O generates a random number

oO and computes comO = h(oO). comO will be used as a public commitment to the

secret, oO, meaning that once comO is given to R, O cannot change the secret oO. Note

that h() need not be a secure string commitment scheme (see Section 2.3.2) | h(x) can

leak information about x as long as it is computationally infeasible to determine x, given

h(x). O generates message m1 as shown in Figure 2.2, and signs it to produce message

me1;
2 me1 is sent to R.

2The messages are labelled so that the second letter of the label identi�es the protocol, and the
subscript identi�es the message number. For example, me1 is the �rst message of protocol exchange, and
mr2 is the second message of protocol resolve.
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exchange protocol

O R

Input : VR;T; text Input : VO ;T; text

comO = h(oO) �
me1 = SigO(

m1z }| {
VO jVRjTjtextjcomO )

���������������������������! give up? : quit

give up? : abort  ����
me2 = SigR(

m2z }| {
me1jcomR)

���������������������� comR = h(oR)

��������
me3 = oO

��������������������! give up? : resolve

give up? : resolve  ��������
me4 = oR

��������������������

abort protocol

O T

�
ma1 = SigO(abortedjme1)
���������������������! if resolved then

ma2 = SigT (me1jme2)
else aborted = true

ma2 = SigT (abortedjma1)

 �����
ma2

�����������������

resolve protocol

O, R T

�
mr1 = (me1;me2)
���������������! if aborted then

mr2 = SigT (abortedjma1)
else resolved = true

mr2 = SigT (me1jme2)

 ��
mr2

��������������
Output : contract (Def. 2:2:2) Output : contract (Def. 2:2:2)

or

abort token abort token

Figure 2.2: Optimistic Protocol for Contract Signing
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Step 2. If R decides to give up, it simply terminates the protocol run. In practice, R

will decide this if it does not receive me1 within a reasonable time. Note that we do not

require globally synchronised clocks: it is entirely up to R to decide what is a \reasonable

time" and when to time out.

If m1 is not formed correctly, or if verifySig(m1;me1; VO) evaluates to false, R ignores the

message. In practice, R may send a negative acknowledgement to O and continue to wait

for a valid message until timing out. In the rest of this description, I do not explicitly

mention that malformed or incorrect messages are ignored.

Otherwise, R generates a random number rO and computes comR = h(oR). R generates

message m2 as shown in Figure 2.2, and signs it to produce me2, which is then sent to O.

Step 3. If O decides to give up, it invokes T by running protocol abort. In practice, O

decides to give up if it does not receive me2 within a reasonable time.

Otherwise it sends oO to R.

Step 4. If R decides to give up, it invokes T by running protocol resolve. Typically, R

gives up if it does not receive an x in time, such that h(x) = comO .

Otherwise it sends oR to O.

Step 5. If O decides to give up, it invokes T by running protocol resolve. Typically, O

gives up if it does not receive a y in time, such that h(y) = comR.

Protocol abort is used by O to abort the exchange so that T will not resolve the

exchange at a later time. Protocol resolve is used by either O or R to force a successful

termination. Clearly only one of abort or resolve can succeed for a given instance of

exchange. On T's system each of protocol resolve and protocol abort is guaranteed to be

atomic.

In protocol abort, O sends a signed abort request to T. If the corresponding ex-

change has not already been resolved, T issues an abort token, SigT (abortedjma1). The

abort token is a guarantee by T that it has not and will not resolve this particular instance

of exchange. If the protocol has already been resolved, T will simply forward the result

of the protocol resolve.

In protocol resolve, either player sends me1 and me2 to T. If the exchange has

already been aborted, T simply returns the abort token. Otherwise, it issues a replace-

ment contract by counter signing me1 and me2 (i.e., SigT (me1jme2)).
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De�nition 2.2.2 A valid contract is of the form

1. fme1; oO;me2; oRg, or

2. SigT (me1jme2)

where,

me1 = SigO(VOjVRjTjtextjcomO ),

me2 = SigR(me1jcomR),

comO = h(oO); and comR = h(oR).

Analysis

The \items" expected by both parties are the contract authenticators: oO and oR respec-

tively. The descriptions of the items are comO and comR, respectively, along with the

contract text itself.

Claim 1 Assuming that the communication channel between O and R is resilient, the

protocol satis�es the e�ectiveness requirement R1.

Proof : It is easy to see that the e�ectiveness requirement is met under the addi-

tional assumptions speci�ed in the statement of the claim. Since neither player wishes

to abandon the protocol, they will not decide to give up and invoke T. The players are

assumed to be behaving correctly; therefore, they will send messages out according to the

protocol. Since we assume that the communication channel between them is resilient, the

sent messages will be eventually received. From the description of protocol exchange, this

implies that O and R will conclude the protocol with fme1; oO;me2; oRg. By De�nition

2.2.2, this is a valid contract.

Claim 2 Assuming that the communication channel between T and any other player is

resilient, the optimistic contract signing protocol satis�es requirements R2a, R3, R4,

and R5 for both O and R.

Proof:

� R2a (Strong Fairness): Assume that T behaves correctly. First consider the fairness

for O | thus we assume that O behaves correctly as well. Since the execution of

resolve and abort are atomic at T's system, there are only two ways in which R may

end up with a valid contract:
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{ O sent oO to R in message me3. If O receives a correct me4, then the fair-

ness requirement for O is met. Otherwise, O can run protocol resolve. O is

the only entity that could have aborted the exchange. Since we assume O

behaves correctly, this would not have happened. Thus, T will respond with

SigT (me1jme2), which is a valid contract by de�nition. Thus the fairness re-

quirement for O is met.

{ O sent me1 to R but did not receive a reply. In the meantime, R ran pro-

tocol resolve and obtained SigT (me1jme2) from T. In this case, O will run

protocol abort. Since the protocol was already resolved, T will respond with

SigT (me1jme2). Thus the fairness requirement for O is satis�ed.

Thus, if T behaves correctly, strong fairness is guaranteed for O. Now, consider

the fairness for R. There are only two ways in which O may end up with a valid

contract:

{ R sent oR to O in message me4. A correctly behaving R will do so only if it

received a valid me3. Thus the fairness requirement of R is met, in this case.

{ R sent me2 to O but did not receive a reply. In the meantime, O ran pro-

tocol resolve and obtained SigT (me1jme2) from T. In this case, R will run

protocol resolve. Since the protocol was already resolved, T will respond with

SigT (me1jme2). Thus the fairness requirement for R is satis�ed.

Thus, if T behaves correctly, strong fairness is guaranteed for R.

� R3 (Timeliness) : First, since we assume that the channel between a given player

and T is resilient, both protocol abort and protocol resolve are guaranteed to be

completed within a �nite time. In Figure 2.2, notice that R can conclude the

protocol in one of three ways:

{ simply terminating at any time before sending message me2, or

{ terminating normally after sending message me4, or

{ running protocol resolve at any other time.

From R2a above, all of these will result in guaranteed fairness. The decision

\give up?" is entirely local. Notice that even if it is based on a timeout (e.g.,

whether to run protocol resolve), the timeout value is locally chosen and can be
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arbitrarily small. Thus, at the beginning of the protocol, R is guaranteed that the

exchange will be completed at a �nite point in time.

Similarly, O can conclude the protocol in one of three ways:

{ terminating normally after receiving message me4, or

{ running protocol abort at any time before sending message me3, or

{ running protocol resolve at any other time.

Again, all decisions are local and both protocol abort, and protocol resolve are

guaranteed to terminate at a �nite point in time. Therefore, O has the timeliness

guarantee.

� R4 (Non-repudiability): Consider the non-repudiability of origin requirement of R.

According to De�nition 2.2.2, the �rst form of a valid contract contains

me1 = SigO(VOjVRjTjtextjcomO ); oO

If the signature scheme is secure, the �rst component can be created only by O. If

the one-way hash function used to compute comO is such that it is infeasible to �nd

second pre-images (if the one-way hash function is collision resistant, this property

is implied), then no one can determine oO unless O revealed it to them. Thus, if

R can demonstrate possession of a valid contract containing me1; oO, then O must

have sent it.

The second form of a valid contract is SigT (me1jme2). If the digital signature

scheme used is secure, this can be generated only by T. Thus, in both cases, R

can prove the origin of a valid contract. A similar argument can show that the

non-repudiability of origin requirement for O is met.

We already showed that the protocol guarantees fairness. If one player is able

to produce a valid contract, it implies that the other player, had it followed the

protocol correctly, will also possess a valid contract. Thus, the non-repudiability of

receipt requirement is met for either player.

� R5 (Veri�ability of T): First, consider this requirement from the point of view of

O. Suppose T behaves incorrectly so that the fairness property is lost for O. This

means that R ends up with a valid contract while O does not. Since the channel
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to T is resilient, there are two cases when O �nishes the protocol without a valid

contract:

1. when it runs either protocol abort or protocol resolve but does not receive any

reply from T, or

2. when it runs protocol abort and receives an abort token.

Since the statement of the claim assumes that T is forced to eventually send a valid

response to any request sent to it, case 1 is not applicable. In section 2.2.3, I discuss

how reasonable this assumption is. For the rest of this proof, we only consider case

2: when T causes the loss of fairness for O by sending an abort token to O while

having sent (or later sending) a replacement contract to R. This is an instance of

T causing loss of fairness to one player by sending it a dishonest, but valid, reply.

If R has a valid contract of the form fme1; oO;me2; oRg, and h() is collision-resistant,

it must mean that O sent oO to R in message me3. But in this case our correctly

behaving O would have run protocol resolve. The only possible reply by T is a re-

placement contract , since O has not previously run protocol abort for this exchange.

In this case, there is no loss of fairness for O. It follows that the only way in which

O can lose fairness due to a misbehaving T is if R ends up with valid contract in

the form of a replacement contract , SigT (me1jme2), given to R by T. If R never

tries to enforce this contract, there is no loss of fairness for O. Therefore it must

be the case that R attempts to enforce this contract. In this case, O can produce

the abort token. Both the abort token and the replacement contract are signatures

under ST . Thus, if the signature scheme is secure, only T could have generated

them. According to protocol abort and protocol resolve, a correctly behaving T

will not create an abort token and a replacement contract containing the same me1.

Therefore, the existence of such a pair can convince an arbiter that T was misbe-

having. A similar argument can show that veri�ability of T is guaranteed from the

point of view of R as well.

P�tzmann et al [PSW98] have shown that optimistic contract signing in an asyn-

chronous communication model requires four messages in four \rounds." Therefore, this

protocol is optimal. P�tzmann et al show that removing any ow from the protocol in

Figure 2.2 leads to a violation of the requirements. For example, consider eliminating the

last ow by de�ning that a valid contract consists of me2 and me3. This could lead to a



2.2. THE OPTIMISTIC APPROACH 23

loss of fairness for R because O could receive me2 and abort the exchange. Since it is R

who takes the risk, we may transfer the right to abort the exchange to R. But this would

result in a loss of the timeliness guarantee to O.

Invisibility of Third Party

In [Mic97], Micali described the notion of an invisible third party. According to De�ni-

tion 2.2.2, there are two forms of a valid contract. The second form makes it obvious that

T was involved in protocol resolve. T is said to be visible in such a protocol. If T were

invisible, the end result (i.e., the form of a valid contract) would be the same regardless

of whether T was run or not. We can easily change the protocol so that T is invisible to

R: in the �rst step of the protocol, we can replace the one-way hash function h() with

the one-way trapdoor function EncT (), where the public encryption key of T is used to

encrypt the random numbers oO and oR. A valid contract for R is fme1; oO;me2; oRg,

where,

me1 = SigO(VOjVRjTjtextjcomO )

me2 = SigR(me1jcomR)

comO = EncT (oOjVOjVR); comR = h(oR)

During protocol resolve, T simply decrypts comO with its private decryption key to

recover the random authenticator. To verify the contract, a veri�er must recompute the

encryption3 comO , and then verify me1, and me2. This version of the protocol satis�es

the same set of requirements as the original version except for R5 (veri�ability of T).

Our proof for the veri�ability of T depended on its being visible. However, the real

intent behind invisibility should be non-invasiveness | the contract-signing protocol

described here is invasive because it dictated the structure of a valid contract. A truly

non-invasive fair exchange protocol should be able to exchange arbitrary items such as

tokens from electronic payment protocols (coins, cheques etc.), credentials, and contracts,

without making any demands on its structure. In Section 2.3, we study the problem of

fair exchange of arbitrary items. Typically, non-invasiveness implies invisibility of third

party. It seems to be di�cult to simultaneously achieve non-invasiveness and veri�ability.

3Note that this is not possible in all encryption mechanisms.
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2.2.3 Remarks on the Veri�ability of Third Party

In the analysis of the contract signing protocol, we were able to prove veri�ability of the

third party only under the assumption that the third party can be forced to eventually

send a valid response to any request sent to it. This is a rather strong assumption. To

satisfy it, we need a fourth party in one form or another. For example, requests to T and

its responses can be sent over a broadcast channel where a number of witnesses listen in.

If T does not send a valid response to a request, the witnesses can vouch for this fact.

Notice that the witnesses simply need to verify whether a response is a valid abort token

or resolved token, without needing to know the entire contents of messages.

If this valid response assumption is not satis�ed, we cannot achieve perfect veri�ability

as stated in the requirement. However if T does not reply, the victim will be able to detect

it. Therefore, even without the valid response assumption, our protocol makes the third

party veri�able with respect to undetectable cheating.

2.3 Generic Fair Exchange

Clearly, a fair exchange mechanism capable of exchanging arbitrary items is quite useful.

In this section, I investigate how feasible it is to develop protocols for generic fair exchange

and in particular what di�culties arise in using the optimistic approach for such protocols.

I will attempt to generalise the protocol described in Section 2.2.2.

2.3.1 Properties of Exchangeable Items

In the simplest case, each item in an exchange can be represented as one or more strings.

For example, parts of a valid contract in Section 2.2.2 were represented as strings. To

transfer such an item, it is enough to simply send the string to the recipient. Consequently,

an exchange of items is essentially an exchange of secret strings. However, in general,

items are transferred using speci�c transfer protocols. For example, a transfer of value

may involve a payment protocol (see Chapter 5). A transfer of a digital good from a

seller to a buyer may involve an interactive �ngerprinting protocol [PS96]. In theory, one

may still be able to identify the communication steps which transfer critical secret strings

in an arbitrary transfer protocol, and separate them. Alternatively, it may be possible

to reduce the transfer of the item to the transfer of a speci�c secret string [AS98]. In

these cases, we can still model any exchange as an exchange of secret strings. In practice,

this is di�cult because it will involve changing existing applications. Even if the transfer
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protocols support a generic token-based interface (see Chapter 5), they will need to be

modi�ed so that they indicate which tokens contain critical strings. Further, it may not

be always possible to separate critical strings from complex transfer protocols without

violating some properties provided by the protocol (such as unlinkability or con�dentiality

of message contents).

Therefore, in the interest of keeping our assumptions as weak as possible to begin

with, we will assume that the transfer of items requires speci�c transfer protocols over

which we have no control. In Section 2.3.2, I describe an asynchronous protocol for the

optimistic fair exchange of a class of items which I call forwardable items. Whether it

is possible to design optimistic fair exchange protocols for arbitrary items is an open

question.

2.3.2 Optimistic Fair Exchange of Forwardable Items

We assume the same requirements, communication model, and cryptographic tools as in

Section 2.2.1. In addition, we assume the following.

First, we assume that P can send the item directly to Q, or it can send it to T; T

will be able to verify the correctness of the item (with respect to the stated description)

and either store it or send it to Q. We also assume that the transfer protocols for these

items are idempotent : re-sending the item by repeating the transfer protocol is harmless.

If an item satis�es both properties, we call it a forwardable item. Simple strings are

forwardable items.

Secondly, we assume the existence of a string commitment scheme with some spe-

cial properties. A suitable string commitment scheme should consist of a function com-

mit() which, given a string m, and a random key key, generates a commitment com,

commit(m; key) = com; and a function verifyCom() such that, given a string m, a

commitment com, and a key key,

verifyCom(com; key;m) = true () commit(m; key) = com

The idea is that once a commitment com of a string m is made, nobody can change

the content m without invalidating com. Further, given com, nobody can obtain any

information about m. We will use a commitment of an item and its key as a non-

repudiation of origin token for that item. In the protocol description below, when we

have to compute commitments on items that are not plain strings, we will use an empty
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string instead | we will still be able to retain the non-repudiability property, as explained

in Section 2.3.3.

New Notation

=
m
==) transfer m using a sub-protocol

exchange protocol

O R

Input : iO; dR; VR;T Input : iR; dO ; VO ;T

�
me1 = SigO(

m1z }| {
VO jVRjTjcomO jhOjdRjdO)

�������������������������������! give up? : quit

give up? : abort  �����
me2 = SigR(

m2z }| {
me1jcomRjhR)

��������������������������

=========
me3 = iO; keyO
=====================) give up? : resolve

give up? : resolve (========
me4 = iR; keyR; rR
======================

����������
me5 = rO

����������������������! give up? : resolve
Output : Output :
iR; keyR; rR iO; keyO ; rO
or a�davit token or a�davit token

or

abort token abort token

Figure 2.3: Optimistic Fair Exchange (forwardable): Exchange Protocol

The optimistic protocol for the fair exchange of forwardable items is shown in Fig-

ures 2.3 and 2.4. The former depicts protocol exchange which is the only one used in a

normal, fault-free case. The latter depicts the recovery protocols resolve and abort which

are used in exceptional situations. Protocol exchange proceeds as follows.

Initially, O and R agree on the descriptions of the items they expect from each other:

dR and dO describe the items expected by O and R respectively. Each player then runs

protocol exchange with its own item and the description of the item it expects to receive.
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New Notation

P Initiator of resolve (either O or R)
Q Responder in resolve (either R or O)

abort protocol

O T

�
ma1 = SigO(abortedjme1)
���������������������!

 �����
resolve

����������������� if R-resolved

 �
ma2 = SigT (abortedjma1)
��������������������� else

aborted = true

resolve protocol

P T Q

��
mr1 = (VP ;me1;me2)
�������������������!

======
iP ; keyP ; rP
===============)

 �
mr2 = SigT (abortedjma1)
��������������������� if aborted

else

P-resolved = true

(======
iQ; keyQ ; rQ
=============== if Q-resolved

else ����
resolve
�����������!

(=
(Q runs resolve)
=============)

 ���
SigT (a�davitjmr1)
����������������� if give up?

(======
iQ; keyQ ; rQ
=============== else

Figure 2.4: Optimistic Fair Exchange (forwardable): Recovery Protocols
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Step 1. O generates a random number keyO from the domain of commit() and a

random number rO. Then it computes comO = commit(iO; keyO ), hO = h(rO), and

dO = desc(iO); collects these pieces of data into a message m1 as shown in Figure 2.3,

and signs it to produce message me1; me1 is sent to R. As we noted earlier, if iO is not

a simple string, we compute comO as a commitment of keyO only. In this case, keyO

serves as a non-repudiation of origin token for any item described by dO. If dO is capable

of uniquely identifying iO, the two ways of computing comO are equivalent. The same

applies to the computation of comR below.

Step 2. If R decides to give up, it simply terminates the protocol run. Typically, R

gives up if it does not receive a valid me1 within a reasonable time. As before, no clock

synchronisation is required. Also, as before, all invalid messages are ignored. A valid

message is such that the last but one component of m1 is the same as desc(iR), the last

component of m1 is dO, and verifySig(m1;me1; VO) evaluates to true.

Otherwise, R generates a random number keyR from the domain of commit() and a

random number rR. It then computes comR = commit(iR; keyR), hR = h(rR) and then

generates message m2 as shown in Figure 2.3, and signs it to produce message me2; me2

is sent to O.

Step 3. If O decides to give up (e.g., if it does not receive a validme2 within a reasonable

time), it runs protocol abort. A valid me2 is such that verifySig(m2;me2; VR) evaluates

to true.

Otherwise it sends iO and keyO to R in message me3. Note that this operation consists

of two parallel sub-protocols: a run of the transfer protocol of iO and a simple message

transfer for sending keyO ; rO. For simplicity, we indicate these as a single \transfer

protocol" in Figure 2.4. The same applies to message me4 below.

Step 4. If R decides to give up (e.g., if it does not receive a valid me3 in time), it runs

protocol resolve. A valid me3 is such that dO = desc(iO), and verifyCom(comO ; keyO ; iO)

evaluates to true, and h(rR) = hR. Again, note that all the sub-protocols mentioned

above must succeed for R to conclude that it has received a valid me3. The same applies

to message me4 below.

Otherwise it sends iR; keyR; rR to O in message me4.

Step 5. If O decides to give up (e.g., if it does not receive a valid me4 in time), it runs

protocol resolve. A valid me4 is such that dR = desc(iR), and verifyCom(comR ; keyR; iR)
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evaluates to true.

Otherwise it sends rO to R in message me5.

Step 6. If R decides to give up (e.g., if it does not receive a valid me5, such that

h(rO) = hO) in time, it runs protocol resolve.

If the protocol completes without any exception, each player P will end up with:

� the item iQ from the other player, Q,

� its non-repudiation of origin (NRO) token consisting of me1;me2; comQ ; keyQ , and

� a non-repudiation of receipt (NRR) token for iP consisting of me1;me2; hQ; rQ.

Only O is allowed to initiate protocol abort. On receiving a request to abort a par-

ticular instance of an exchange, T will �rst check to see if R has already resolved. If it

has, T will tell O to run protocol resolve instead. Otherwise, T will mark the exchange

as aborted and issue an abort token to O.

Protocol resolve proceeds as follows. Either O or R can run resolve. Let us denote the

invoker by P and the other player by Q.

Step 1. First, the signed message me1 and me2 are sent to T along with the invoker's

veri�cation key VP . Then P sends its item to T using the item using the transfer protocol,

as well as all the non-repudiation tokens.

Step 2. If the protocol instance has been aborted before, T replies with the abort token.

Step 3. Otherwise, T will mark the protocol as resolved by P and adds iP , keyP , and rP

to its stable storage.

Step 4. If the exchange is already marked as resolved by Q, T will extract iQ, keyQ , and

rQ from its stable storage and forward them to P using the item transfer protocol.

Step 5. Otherwise, T will send a message to Q asking it to run protocol resolve.

Step 6. If Q runs resolve successfully, iQ, keyQ , and rQ will be added to T's storage.

Step 7. If T �nds that Q has resolved the exchange, it can forward iQ, keyQ , and rQ to P.

If T decides to give up and force a termination (e.g., when Q does not complete protocol

resolve within a reasonable time), it will issue an a�davit token to P. P may choose to

terminate at this point, in which case it has achieved weak fairness, or to re-run protocol

resolve later.
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The a�davit token given to P is a statement by T that if Q wants, it can achieve strong

fairness at any time after the issue of a�davit token. As before, we assume that T will

execute each of protocol resolve and protocol abort in a mutually exclusive manner. The

idea behind weak fairness is that the player who ends up with only an a�davit can initiate

a dispute outside the fair exchange system and use the a�davit as evidence.

Note that the interaction with T and Q (steps 5 and 6) is not necessary as far as

meeting the weak fairness requirement is concerned. It is included as a practical measure

only.

2.3.3 Analysis

Security of the Protocol

The items expected by P from Q are the actual item itself (iQ), its non-repudiation of

origin token (keyQ), and the non-repudiation of receipt token for iP (rQ). Now let us

analyse the security of the protocol by arguing how far it meets the requirements identi�ed

in Section 2.1.1.

Claim 3 Assuming that the communication channel between O and R is resilient, the

protocol satis�es the e�ectiveness requirement (R1).

Proof : Since both players are assumed not to want to abandon the exchange, neither will

give up and invoke T. As both are honest, they will send their messages according to the

protocol. The resilient channel between them will guarantee that the sent messages are

eventually received. Under these conditions, from the description of protocol exchange,

we see that at the end of exchange O has iR, keyR, and rR. Thus the e�ectiveness

requirement for O is met. Similarly, the requirement is met for R as well.

Claim 4 Assuming that the channel between T and any other player is resilient, and that

T behaves correctly, the protocol satis�es the weak fairness requirement (R2b).

Proof : First, we consider requirement R2b from the point of view of O. Since T will

not run protocol abort and protocol resolve in parallel, there are only two ways in which

R may end up with iO:

� O sent it in ow me3. If O receives me4 in reply, then the fairness requirement is

met. Otherwise O can run protocol resolve. Since O is the only entity that can

run protocol abort, and we assume O behaves correctly, T will not respond with

abort token. In this case, T sends one of two replies:
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{ if R has successfully concluded protocol resolve, then T will already have iR,

keyR, and rR in its storage. It simply forwards them to O. O therefore achieves

strong fairness. Note that R may have run protocol resolve before O started

its own run of protocol resolve. Or R may have been asked to initiate a run of

protocol resolve.

{ if R has not successfully concluded protocol resolve, then T will issue an a�-

davit to O. Thus, O will achieve weak fairness.

In either case, the fairness requirement of O is satis�ed.

� R obtained it from T by running protocol resolve. The only way T can possess the

item is if O sent it to T as part of a run of protocol resolve. But we showed above

that in this case, O's fairness requirement is already met.

Thus given the assumptions of the claim above, the weak fairness requirement (R2b) is

satis�ed from the point of view of O.

Consider the requirement from the point of view of R. There are two ways in which

O may end up with iR:

� R sent it in message me4. But in this case, R already received iO in message me3.

Thus R has achieved strong fairness.

� T forwarded it to O during a run of protocol resolve. Since we assume that T

behaves correctly, this means that the exchange was not already aborted when O

ran protocol resolve (otherwise the \aborted" ag would have prevented the protocol

resolve from succeeding). Call this \run 1". The only way T can come to possess

iR is if R deposited it during another run (run 2) of protocol resolve. Run 2 must

have taken place before run 1. Thus, the aborted ag was not set during run 2

either. Therefore, T would not have replied with abort token to R. This means that

at the end of run 2, R received either iO or an a�davit. In either case, the fairness

requirement for R is met.

Claim 5 Assuming that the channel between T and any other player is resilient, and

that the underlying transfer protocols are guaranteed to complete within a �nite time once

they are begun, if the fair exchange protocol meets the weak fairness requirement (R2b),

it also meets the timeliness requirement (R3).
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Proof : Now consider requirement R3 from the point of view of O. First, since the

channel to T is assumed to be resilient and the transfer protocols are timely, the recovery

protocols initiated by O are guaranteed to be completed within a �nite time. From the

protocol description, notice that O can conclude the protocol in one of three ways:

� terminating normally after sending message me4, or

� running protocol abort at any time before sending message me3, or

� running protocol resolve at any other time.

All of these will result in guaranteed weak fairness. The \give up?" decision is entirely

local (as mentioned earlier, the \give up?" decision by T during protocol resolve is not

essential to the security requirements). In the �rst two cases, if R runs protocol resolve

later, it can result in O receiving the items it expects. This upgrades the fairness for O

from weak to strong. Thus, the timeliness requirement for O is met.

Now consider the same requirement for R. It can conclude the protocol in one of three

ways:

� simply terminating at any time before sending me2, or

� terminating normally after receiving me5, or

� running protocol resolve at any other time.

Again, each of these will result in guaranteed weak fairness and the level of fairness

will not be degraded by a subsequent attempt by O to run protocol resolve. Thus the

timeliness requirement is satis�ed for R as well.

Claim 6 The protocol meets non-repudiability requirements (R4a and R4b).

Proof : By the protocol description, at the end of a successfully concluded exchange, P

will have

� its non-repudiation of origin token consisting of (me1;me2; comQ ; keyQ), and

� a non-repudiation of receipt token for iP consisting of (me1;me2; hQ; rQ).

The commitments comQ and hQ are embedded into the initial agreement message from

Q (one of me1 and me2). Since this agreement message is a signature using SQ, as long
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as the digital signature scheme is secure, only Q could have generated it. As long as

the string commitment scheme is secure and the one-way hash function h() is resistant

against second pre-image �nding,4 if P possesses keyQ and rQ, it can only be so because

Q sent them to P. Since according to the protocol, Q always sends keyQ along with

iQ, (me1;me2; comQ ; keyQ) is a valid non-repudiation of origin token. Similarly, since

according to the protocol, Q will not release rQ before receiving iP , (me1;me2; hQ; rQ) is

a valid non-repudiation of receipt token.

Remarks on Channel Quality

Throughout, we have assumed that the channel between T and each other player is

resilient. It is reasonable to assume that semi-open networks such as corporate intranets

or the telephone network are reliable. One way to implement reliable channels is to fall

back to more reliable media (for example, starting with a packet-switched network, falling

back to a dial-up line and then to a dedicated line).

The resilience assumption is reasonable even on open networks such as the Internet. If

an attacker managed to disrupt a communication channel, it will eventually be detected

and repaired. Also, protection against all benign network failures are covered under the re-

silient network assumption. We also assumed that an attacker can merely delay messages

inserted into a resilient channel, but cannot remove them. In practice, this is achieved

by using a datalink-layer protocol that takes care of message re-transmissions [Bla94].

Of course the resilience assumption does not place a bound on the delay before the

channel becomes operational again. Therefore, the optimistic approach is inappropriate to

exchange time-sensitive items (e.g., current stock quotes). Fair exchange of time-sensitive

items over open networks is a di�cult problem, regardless of the technique. Even if we

used an online third party (instead of the optimistic approach), the protocol will not be

secure against an attacker who can disrupt communication channels long enough. In any

case, the optimistic approach is intended to be used in conjunction with a suite of other

approaches such as those that use an on-line third party, so that depending on the type

of the items to be exchanged, a suitable approach can be chosen for the exchange.

We also assumed that all communication channels are con�dential. This is stronger

than what we actually need in order to guarantee fairness. The fairness of the contract

signing protocol does not require con�dentiality for any of its message ows. In the

4Second pre-image �nding (i.e., given h(x) and x, �nding a y so that h(y) = h(x) as well) is harder
than �nding collisions.
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exchange protocol for forwardable items, R must send message mr1 con�dentially, for

otherwise, O can intercept iR and then abort the exchange. Of course, if con�dentiality

of message contents against eavesdroppers is a requirement, then all messages need to be

sent via a con�dential channel.

External Dispute Resolution

If a player produces an a�davit during an external dispute, the other player may be able

to refute it. To see this, consider the case when O is malicious and wants to frame R.

It completes the exchange normally and then runs protocol resolve after cutting o� the

channel between T and R. Since R is not reachable, T will issue an a�davit to O. R will

not even know that O has acquired an a�davit since R had no need to initiate protocol

resolve. But R can produce the non-repudiation of receipt token obtained as a result of

the successful exchange.

Practical Concerns

Once T becomes involved in an exchange (by aborting or resolving), it has to retain

information about that exchange forever, since we imposed no time limits. In practice,

however, T can limit the extent of its record-keeping to manageable levels. T may ad-

vertise a maximum lifetime value for its records. This lifetime can be very large (e.g.,

several years). Note that this does not change the timeliness guarantee: each player can

complete an exchange as fast as it wants; a player who has completed an exchange to its

satisfaction need not wait until the end of the lifetime.

Limiting the lifetime will also have an impact on the veri�ability of T. T must embed

a time-stamp in the a�davits it issues. For example, to prove T cheated in the contract

signing protocol, a player has to produce an abort token and a replacement contract for

the same exchange containing time-stamps which di�er by a value less than the maximum

lifetime.

2.3.4 Weak vs. Strong Fairness

Weak fairness is useful only if both O and R can be made to participate in the dispute

resolution. Even though the contract signing protocol in Section 2.2.2 uses the same

optimistic approach as the generic protocol, we were able to guarantee strong fairness.
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This was because T could generate the contract by itself (even when it was used as an

invisible third party). Let us call this property generatability. Contracts, and receipts for

certi�ed mail etc. are examples of generatable items.

Consider a purchase scenario: Suppose O wants to make a credit card payment to

R and wants to receive some goods in return. If R receives the payment but does not

respond, O will end up with an a�davit token instead of the item. But the credit card

payment system is a \pay-later" system | if the credit card issuer is willing to consider

the a�davit token by T trustworthy, it can cancel the payment. This will result in strong

fairness for O. Let us call this property revocability.

When we use generatable or revocable items in an exchange, protocol resolve is

changed so that instead of sending an a�davit, T will provide a replacement (in case

of the generatable items) or have the item revoked (in case of revocable items).

Notice that if R is willing to forego the timeliness requirement (i.e., if it is willing to

wait until it receives ow me3), it can actually achieve strong fairness. Thus, by suitable

assignment of roles, the optimistic protocol for generic fair exchange can be made to

guarantee strong fairness. If the item of one player is generatable, then it should play the

role of the responder (R). Similarly, if the item of one player is revocable, then it should

play the role of the originator(O). In passing, also note that if one of the two players

wishes to be anonymous, then it should play the role of the originator. Interestingly, it

is also possible to transform a large class of items into generatable items. Techniques

for such transformations and e�cient protocols for the exchange of generatable items are

discussed in Chapter 3.

2.4 Instantiations of the Generic Protocol

We can instantiate the generic protocol of Figures 2.3 and 2.4 to yield concrete protocols

for speci�c types of fair exchanges. In this section, we briey outline two such instan-

tiations: for certi�ed mail, and payment for receipt. Note that the generic protocol has

provision for non-repudiation tokens built into it. In both instantiations described below,

we will treat the non-repudiation tokens as the item expected by the originator. In the

generic protocol, an item iP is always sent along with its NRO token, keyP . Therefore,

by treating keyP as iP , the fairness properties are not a�ected.
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2.4.1 Certi�ed Mail

In certi�ed mail, a sender wants to send a mail message m to a receiver. The sender

requires that the receiver not be able to deny receiving the message. To achieve this,

the sender needs a non-repudiation of receipt token from the receiver in exchange for the

message. Thus certi�ed mail is a fair exchange of the message and its non-repudiation of

receipt token.

The mail message is neither generatable nor revocable. But it is forwardable. As

in the contract signing example, we de�ne a valid receipt for the message as either the

tuple, fme1; me2; keyRg or an a�davit token consisting of T's signature on me1; me2.

Thus, the mail sender takes the role of the originator and the receiver takes the role of the

responder. The generic protocol can be instantiated as shown in Table 2.2. The receipt

is, by de�nition, a generatable item.

Generic Protocol Instantiation

iO mail
iR receipt text(t)
dO not needed
dR receipt text(t)
comO commit(mail; keyO )
comR h(keyR)
resolve for O if unsuccessful, T issues replacement receipt
resolve for R same as in Figure 2.4

Table 2.2: Instantiating the Generic Protocol for Certi�ed Mail

With resilient channels, this instantiation makes T veri�able, and guarantees strong

fairness and timeliness for O. R is guaranteed either strong fairness without timeliness or

weak fairness with timeliness.

A slightly di�erent instantiation, shown in Table 2.3 guarantees strong fairness and

timeliness to both players, but does not make T veri�able. A valid receipt for the mail

message is either fme1; me2; keyRg or an a�davit from T. This instantiation is illustrated

in Figure 2.5. The �gure depicts the result of a direct instantiation according to Table 2.3,

followed by the removal of unnecessary ows and �elds. For example, since we do not

make use of the non-repudiation of receipt tokens (the rP values), the exchange protocol

has only four ows. Protocol abort is the same as in Figure 2.4.



2.4. INSTANTIATIONS OF THE GENERIC PROTOCOL 37

exchange protocol

Sender(O) Receiver(R)

Input : mail; t; VR;T Input : t;null ; VO ;T

�
me1 = SigO(VO jVRjTjEncT (mailjkeyO jVOjVR)jt)
���������������������������������������! give up? : quit

give up? : abort  ���������
me2 = SigR(me1jh(keyR))
�����������������������������

�������������
me3 = mail; keyO
��������������������������! give up? : resolve

give up? : resolve  �������������
me4 = keyR
�������������������������

resolve protocol for O

O T

�
mr1 = (VO ;me1;me2;mail; keyO )
���������������������������!

 ������
mr2 = abort token
�������������������� if aborted

else

O-resolved = true

 ������
SigT (a�davit;mr1)
���������������������

resolve protocol for R

R T

�
mr1 = (VR;me1;me2; keyR)
����������������������!

 ����
mr2 = abort token
������������������ if aborted

else

decrypt fourth component of me1
if VO ; VR found in encryption

 �����
mail; keyO

����������������� R-resolved = true

Figure 2.5: Certi�ed Mail Protocol
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Generic Protocol Instantiation

iO mail
iR receipt text (t)
dO not needed
dR receipt text (t)
comO EncT (mailjkeyO jVOjVR)
comR h(keyR)
resolve for O T recovers keyR
resolve for R if comO is correct, T recovers mail; keyO in return for keyR

Table 2.3: Instantiating the Generic Protocol for Certi�ed Mail

2.4.2 Payment for Receipt

In payment for receipt, a payer wants to make a payment and get a receipt in return. If

the payment messages are forwardable (e.g., an electronic cheque), a simple instantiation

is to allow T to issue a replacement receipt when payer O runs protocol resolve. This

would guarantee timeliness for both players, strong fairness for payee R but only weak

fairness for O.

Suppose that the payment mechanism used supports revocation. Table 2.4 shows an

instantiation that guarantees strong fairness and timeliness for the payer. The payee

has a choice of either timeliness combined with weak fairness or strong fairness without

timeliness. The protocol is illustrated in Figure 2.6. If O does not receive a payment-

receipt after sending the payment, it can invoke T to revoke the payment. If R does

not receive an NRR token after sending a payment-receipt, it can invoke T to receive a

replacement NRR token. With a resilient channel between R and T, a misbehaving O

may succeed in revoking a payment after a successful exchange. But R can prove that

the O misbehaved (in choosing to run protocol resolve) by producing the original NRR

token for the payment-receipt itself (i.e., rO). If O presents the payment receipt issued

by R to a veri�er, the veri�er must always check with R or T to ensure that the payment

has not been subsequently revoked.
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exchange protocol

Payer(O) Payee(R)

Input : p; t; VR;T Input : t; a; VO ;T

�
me1 = SigO(VO jVRjTjnull jhOjtja)
���������������������������! give up? : quit

give up? : abort  ��
me2 = SigR(me1jh(keyR)jhR)
�������������������������

=======
me3 = p; keyO
===================) give up? : resolve

give up? : resolve  �������
me4 = keyR; rR
�������������������

�������
me5 = rO

�������������������! give up? : resolve

resolve protocol for O

O T

=
mr1 = (VO ;me1;me2; p; keyO ; rO)
===========================)

 �������
mr2 = abort token
��������������������� if aborted

else

O-resolved = true

 ��������
keyR; rR

�������������������� if R-resolved

 �������
SigT (revokedjmr1)
��������������������� else

resolve protocol for R

R T

�
mr1 = (VR;me1;me2; keyR; rR)
�������������������������!

 ������
mr2 = abort token
�������������������� if aborted

else

R-resolved = true

 ������
SigT (revokedjmr1)
�������������������� if O-resolved

 �����
SigT (a�davitjmr1)
������������������� else

Figure 2.6: Payment for Receipt
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Generic Protocol Instantiation

iO payment (p)
iR receipt text (t)
dO amount (a)
dR receipt text (t)
comO not needed
comR h(keyR)
resolve for O if unsuccessful, T revokes payment
resolve for R if unsuccessful, T issues replacement NRR token for payment-

receipt

Table 2.4: Instantiating the Generic Protocol for Payment-for-receipt

2.5 Summary and Conclusions

My contributions in this work are as follows. I have described the �rst asynchronous

protocol for contract signing guaranteeing timely completion. I have generalised the

idea to the exchange of forwardable items. In analysing this protocol, I have introduced

the notions of strong, and weak fairness, as well as the notions of generatability

and revocability. I showed that the optimistic approach can guarantee strong fairness,

if the items to be exchanged are generatable or revocable.

In the case of weak fairness, it is necessary to use the collected evidence (e.g., a�-

davit token) in an external dispute resolution procedure. Chapters 4 and 6 take a closer

look at these issues. In Chapter 3, I show various techniques to add generatability to large

classes of items, thereby making strong fairness possible while exchanging these items.
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3.1 Fair Exchange of Generatable Items

3.1.1 Introduction

In Chapter 2, Section 2.3.4, we concluded that optimistic fair exchange protocols can

guarantee strong fairness to a player if the item expected by that player is generatable.

We also saw intuitive examples of generatable items such as replacement receipts or

contracts. However, in these examples, the fair exchange protocol was invasive, because

generatability depended on the ability to dictate the structure of the items. It would be

desirable to �nd non-invasive ways of making items generatable.

In this chapter, the notion of a generatable item is formally de�ned in Section 3.1.2.

Based on this de�nition, in Section 3.2, an optimistic protocol for the fair exchange

of generatable items guaranteeing strong fairness, is presented. In Section 3.3, general

techniques for transforming arbitrary items into generatable items are examined. Then

veri�able encryption is described in Section 3.4 as a powerful non-invasive technique

for adding generatability to a large class of items. Some variations are discussed in

Section 3.5.

3.1.2 De�nition of Generatable Items

The basic requirement of a generatable item is that T must be able to generate it even

when the sender of that item is unavailable or uncooperative. Let us introduce the notion

of a permit of an item. A permit will allow T to generate the corresponding item. Thus,

a permit serves as a guaranteed promise of an item from its sender to its receiver. There

are various ways of implementing a permit. In the contract signing example, the permit

consisted of the initial messages me1 or me2. It simply indicated to T that it can issue

a replacement contract. In Section 3.4, we will see a type of permit which contains the

item inside it.

In the context of optimistic fair exchange, an additional requirement is that before

T can generate an item, it may need to verify what item was expected in return for the

item to be generated. There must be a way to securely bind this requirement into the

permit.

I de�ne a generatable item as one from which a permit can be constructed, using

the following primitives. (We assume that a collision-resistant one-way hash function h()

exists.)
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� A protocol permit-trans transfers a permit for an item from the sender to the re-

ceiver. The protocol is invoked via the service primitive bind(at the sender) and

verify(at the receiver):

{ bind(receiver; item; description; authenticator;T)! permit

bind() takes the identity of a receiver, an item, a description of another item,

a number from the range of h(), and the identity of a third party as input,

constructs a permit and sends it to the receiver, and returns the permit as

output. Intuitively, a permit is a secure binding of the input parameters. The

third parameter describes the expected item. For example, P will generate

its permit pP as bind(Q; iP ; dQ; a;T). The identity Q may be replaced by a

key, such as VQ. The authenticator, as its name suggests, will be used in the

optimistic exchange protocol (in Section 3.2.1) to authenticate the originator.

It is also used to uniquely identify an exchange transaction. The usage is later

explained in detail. T identi�es the entity to be used as the third party.

{ verify(sender; item; description;T)! permit; authenticator

verify() takes the identity of a sender, an item, a description of another item,

and the identity of a third party as input, receives a purported permit from

the sender, and, if the binding in the permit is valid, outputs the permit and

the embedded authenticator (a number from the range of h()). For example,

Q will receive and verify pP by invoking verify(P; iQ; dP ;T).

� extrAuth(permit)! authenticator

extrAuth() takes a permit as input and returns the unique authenticator embedded

in it. It is intended to be used by T.

� extrExp(permit)! description

extrExp() takes a permit as input and returns the description of the expectation

embedded in the permit. For example, extrExp(pP ) will yield dQ. It is intended to

be used by T.

� extrItem(permit; RT )! item

extrItem() takes a permit and a private key as input and returns the item represented

by the permit. It is intended to be used only by T. For example, extrItem(pP ; RT )

will yield an item with the same description as iP . RT is a private key known only
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to T. Depending on the instantiation, RT can be a signing key (ST ) or a decryption

key (DT ).

� matchExp(description; item)! true=false

matchExp() takes a description and an item, and returns true if the item

matches the description. Typically, the implementation of matchExp() would be

description
?
= desc(item). But it can be slightly di�erent in some instantiations.

The various extraction primitives (extrAuth, extrExp, and extrItem) are intended to be

used by T during the recovery protocols, as explained in Section 3.2.1. In Section 3.2.2,

I state the requirements on a permit in terms of the primitives de�ned here. However, I

describe the protocol for the fair of exchange generatable items �rst, in order to motivate

the requirements.

3.2 Fair Exchange Protocol for Generatable Items

3.2.1 Protocol Description

As usual, we assume that the communication channels are con�dential. Optimistic fair

exchange of generatable items consists of an exchange protocol (protocol exchange) and

two recovery protocols (protocol abort and protocol resolve). Any malformed or incorrect

messages are ignored by the receiver (in practice, the receiver will request a re-send). As

in Chapter 2, each player may make an asynchronous, unilateral decision (indicated by

\give up?") to conclude the protocol. Typically, this decision is made if a valid response

is not received from the peer within a reasonable, local, time limit. Also as in Chapter 2,

the player who sends the �rst message is referred to as the originator (O). The other

player is referred to as the responder (R). Protocol exchange proceeds as follows.

Step 1. O generates a random number r and computes an authenticator aO as h(r). The

authenticator must be unique for each instance of the exchange. O will then run the

permit-trans protocol using bind(R; iO; dR; aO;T). The permit-trans protocol transfers pO

and aO to R in ow me1. O will receive pO as output.

Step 2. R participates in the permit-trans protocol using verify(O; iR; dO;T). If it suc-

cessfully returns a permit pO and the authenticator aO, R continues by initiating its own

permit-trans protocol run using bind(O; iR; dO; aO;T); to create and send its own permit.
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New Notation

=
m
==) transfer m using a sub-protocol

P either one of O or R
iP item sent by P

dP description of iP
pP permit sent by P

exchange protocol

O R

Input : R; iO; dR;T Input : O; iR; dO;T

aO = h(r) give up? : quit

bind(R; iO; dR; aO;T) =
me1 = pO; aO

==============) verify(O; iR; dO;T)
! pO ! pO; aO? : continue
give up? : abort

verify(R; iO; dR;T) (=
me2 = pR

============== bind(O; iR; dO; aO;T)
! pR; a ! pR

a
?
= aO : continue give up? : resolve

=
me3 = iO==============) matchExp(dO; iO) : continue

give up? : resolve

matchExp(dR; iR) : quit (=
me4 = iR==============

Output : Output :
iR iO

or

abort token abort token

Figure 3.1: Optimistic Fair Exchange of Generatable Items: Exchange Protocol
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abort protocol

O T

�
ma1 = abort; pO; r
���������������! extrAuth(pO) 6= h(r)? : quit

resolved[h(r)]? : ma2 = iR
else

ma2 = SigT (aborted; pO)
aborted[h(r)] = true

(=
ma2=============

resolve protocol for O

O T

��
mr1 = pR; r
��������������! extrAuth(pR) 6= h(r)? : quit

aborted[h(r)]? : mr2 = SigT (aborted; pO)
else

mr2 = extrItem(pR; RT )
resolved[h(r)] = true

(=
mr2=============

resolve protocol for R

R T

=
mr1 = pO; iR

=============) : matchExp(extrExp(pO); iR)? : quit
a = extrAuth(pO)
aborted[a]? : mr2 = SigT (aborted; pO)
else

mr2 = extrItem(pO ; RT )
store iR; resolved[a] = true

(=
mr2=============

Figure 3.2: Optimistic Fair Exchange of Generatable Items: Recovery Protocols
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The same authenticator aO received from O is embedded into R's permit. If R decides to

give up, it simply terminates the protocol run.

Step 3. O participates in this second run of the permit-trans protocol using

verify(R; iO; dR;T). If it returns successfully with pR, and the authenticator a such that

a = aO, O continues by sending iO to R in message me3. If O decides to give up, it runs

protocol abort.

Step 4. If R decides to give up, it invokes protocol resolve. If R receives a message me3

such that matchExp(dO;me3) is true, it sends iR to O in message me4 and terminates

with success.

Step 5. If O decides to give up, it runs protocol resolve. If O receives me4 such that

matchExp(dR;me4) is true, it terminates with success.

Protocol abort is used to tell T not to resolve this particular exchange. Only O is

allowed to run protocol abort. To prove itself as the originator of an exchange, O will

send the pre-image r of the exchange authenticator aO in the abort request. If it has not

already been resolved, T will comply by issuing an abort token and marking the exchange

as aborted. If it has already been resolved, T will give the expected item (iQ) instead.

Protocol resolve is used to request T to generate the item from a permit. It can be

run by either player. The invoker will send the permit received from the other party to

T. In addition, it has to send an appropriate credential: when O invokes protocol resolve,

it has to send r whereas when R runs protocol resolve, it has to send iR. If the exchange

has been already aborted, T will reply with abort token. Otherwise, it will generate the

item from the given permit and mark the exchange as resolved.

As before, we assume that the execution of protocols abort and resolve at T are atomic.

Omust choose a fresh r for each exchange it initiates. Normally, it must also keep r secret.

(During recovery, r will be sent to T over a con�dential channel.)

3.2.2 Requirements on Permits

Now, we are in a position to formally state the requirements a permit should satisfy, in

terms of the primitives de�ned in Section 3.1.2.

Consider a permit pP generated by P (i.e., either O or R) as bind(Q; iP ; dQ; a;T)! pP ;

in order to be sent to Q (i.e., either R or O) using our optimistic fair exchange protocol.

The precise semantics of a permit are captured by the following requirements on these
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primitives. The statements of all requirements assume that the permit pP was created as

above, and that all players trust T. As usual, a requirement of the form \P requires . . . "

assumes that P behaves correctly.

� Permit e�ectiveness: Each player requires that T can extract a, dQ, and iP

(or another item which matches the same expectation) from pP , created as shown

above. More concretely,

matchExp(dP ; extrItem(pP ; RT ))! true

extrAuth(pP )! a

extrExp(pP )! dQ:

Further, each player requires that the receiver Q can receive and verify the correct-

ness of the permit pP (created using bind(Q; iP ; dQ; a;T)).

if desc(iP ) = dP and 9 iQ j desc(iQ) = dQ

then verify(P; iQ; dP ;T)! pP ; a

� Permit integrity: The issuer P requires that the receiver Q cannot tamper with

pP in such a way that it appears to bind a di�erent description and/or authenticator

with the same item. More concretely, if Q creates a p0P such that

if extrAuth(p0P ) 6= extrAuth(pP ) or

extrExp(p0P ) 6= extrExp(pP )

then matchExp(desc(iP ); extrItem(p
0

P ; RT ))! false

� Permit con�dentiality: The issuer P also requires that pP reveals no information

about iP to Q other than its description, dP .

� Permit correctness: The receiver Q requires that if a permit pP passes the permit

validity test, then it is guaranteed to be able to recover the expected item without
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any help from P. More concretely,

if verify(P; iQ; dP ;T)! pP ; a

then matchExp(dP ; extrItem(pP ; RT ))! true

and extrExp(pP )! desc(iQ)

and extrAuth(pP )! a

3.2.3 Analysis

Claim 7 Assuming the communication channel between O and R is resilient, the protocol

satis�es the e�ectiveness requirement R1.

Proof : The argument is similar to that in Section 2.2.2.

Claim 8 Assuming the communication channel between T and any other player is re-

silient, and T behaves correctly, the generic protocol for the fair exchange of generatable

items satis�es requirements R2a (strong fairness), and R3 (timeliness) for both O and

R.

Proof :

� R2a (Strong fairness) : First we prove that this requirement is met for O, assuming

O behaves correctly. Since we assume that R cannot extract any information about

iO from pO other than dO (the \permit con�dentiality" property), there are only

two ways in which R receives an item matching dO while O has not received an

item matching dR yet:

{ O sent it to R in message me3. Since O is assumed to have behaved correctly, it

follows that (a) O has not run protocol abort for this exchange, and (b) O has

already received a permit pR in me2 that passed the validity test. We assume

that T behaves correctly. T will honour abort requests only if the request is

accompanied by a pre-image r of the authenticator aO. Only O knows r. If the

hash function h() is one-way and resistant to collisions, R cannot determine a

valid pre-image of aO. Therefore, R cannot convince T to abort the exchange.
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The \permit correctness" property implies that

matchExp(dR; extrItem(pR; RT ))! true

extrAuth(pR)! aO

Therefore, if O runs protocol resolve by sending r and pR, T will reply with an

item matching description dR. Thus, the strong fairness requirement is met

for O in this case.

{ T sent it to R when the latter ran protocol resolve. Since we assume T is

honest, and protocols abort and resolve are atomic, it must be the case that

this exchange has not been previously aborted. If O already has pR, then this

case reduces to the previous case, thereby satisfying the fairness requirement

for O. If O does not yet have pR, then it can run protocol abort. Now, from the

\permit integrity" property and the fact the R successfully �nished protocol

resolve, it follows that it must have used pO during that run. Thus, when O

runs protocol abort with r, the authentication is guaranteed to succeed, and,

T is guaranteed to possess iR that satis�es O's expectation, dR. Thus, the

strong fairness requirement for O is met.

Thus, the protocol guarantees strong fairness for O.

Now, consider the requirement for R. There are again only two ways by which

O can get an item matching dR. Either R sent it in message me4 or T sent it

during recovery. In the former case, a correctly behaving R must have already

received iO thereby satisfying its fairness requirement. In the latter case, since T

resolved the exchange, and the recovery protocols are atomic at T, T has not and

will never mark the exchange as \aborted." Suppose R had already received the

permit pO which passed the veri�cation test. In this case, the \permit correctness"

property implies that R can successfully run protocol resolve, thereby satisfying the

fairness requirement. Suppose R has not already received pO. Then O does not

have pR either, and therefore could not have run protocol resolve itself. If O had

run protocol abort, it would have succeeded, since neither player could have run

protocol resolve before. But we assumed that O already got the item. Therefore,

this last case does not arise.
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Thus, the protocol guarantees strong fairness for R.

� R3 (Timeliness): The argument is similar to that in Section 2.2.2.

We started with the requirement that all communication channels are con�dential.

This is stronger than what we actually need. Message mr1 during R's execution of

protocol resolve needs to be protected so that only T can see its contents. Otherwise, O

can abort the exchange and still get iR by passively observing this message. Similarly,

mr1 needs to be protected during O's execution of protocol resolve. Otherwise, R can

steal r from O's resolve request, and use it to abort the exchange. None of the other

messages in any of the three protocols needs to be con�dential, as far as the fairness

requirements are concerned. If data con�dentiality against observers is a requirement,

then messages me3, me4 of protocol exchange need to be sent con�dentially, too.

3.3 Making Items Generatable

A straight-forward way to construct permits is to use digital signature schemes. As long

as the digital signature scheme is secure, the binding property is maintained. In this

section, I describe some ways of using such permits to render items generatable.

3.3.1 Replacement Tokens

Some items are either inherently generatable or can be de�ned so that they are gener-

atable. We saw an example in the case of contract signing in Section 2.2.2. Table 3.1

shows how the generic de�nition of a generatable item can be instantiated in the case of

replacement tokens. The symbol `j' indicates concatenation. We assume that concatena-

tion does not remove information about the constituent strings. That is, if z = xjy, then

given z, one can infer that its constituent parts are x and y.

Claim 9 The construction described in Table 3.1 constitutes a valid permit according to

the requirements in Section 3.2.2.

Proof :

� Permit e�ectiveness: From the de�nition of pP in Table 3.1, it is easy to see that

the conditions for permit e�ectiveness are met.
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Generic De�nition Instantiation

pP SigP (desc(iP )jdQjajT)
bind(Q; iP ; dQ; a;T) construct pP as shown above, send it with a; return pP
verify(P; iQ; dP ;T) receive pP , a, check verifySig(dP jdesc(iQ)jajT; pP ; VP ); return pP , a
extrAuth(pP ) extract dP ; dQ; a from pP , check verifySig(dP jdQjajT; pP ; VP ), return

a

extrExp(pP ) extract dP ; dQ; a from pP , check verifySig(dP jdQjajT; pP ; VP ), return
dQ

extrItem(pP ; RT ) sign(a�davitjpP ; ST )

matchExp(desc; item) (desc
?
= desc(item)) or verifySig(a�davitjpP ; item; VT ), where

pP ; a  verify(P; iQ; desc;T)

Table 3.1: Instantiating the Generic Protocol for Replacement Tokens

� Permit integrity: If the digital signature scheme is secure, no one can take the

permit pP and create a new fake permit p0P such that verifySig(PjdP jdQja; p
0

P ; VP )

evaluates to true. Thus the premise of the permit integrity condition cannot be

true. Therefore, this instantiation satis�es the permit integrity condition.

� Permit con�dentiality: From the de�nition of pP in Table 3.1, pP contains no

information about iP other than desc(iP ). Thus, this instantiation satis�es the

permit con�dentiality condition.

� Permit correctness: verify(P; iQ; dP ;T) successfully returns the received permit

pP and authenticator a only if verifySig(dP jdQjajT; pP ; VP ) evaluates to true. The

same test is used in both extrExp(pP ) and extrAuth(pP ). Therefore these two prim-

itives would successfully return desc(iQ) and a respectively. extrItem(pP ; ST ) will

return SigT (a�davitjpP ). matchExp(dP ;SigT (a�davitjpP )) is trivially true. There-

fore, this instantiation satis�es the permit correctness condition.

Plugging this instantiation into the generic fair exchange protocol of Figures 3.1 and

3.2 results in essentially the same protocol as the one in Figure 2.2. The variations are

minor and actually the version here is slightly more e�cient than the earlier version:

instead of O making a second signature during the abort request, it uses the pre-image of

the authenticator, thereby saving one signature. It is easy to see how the invisible third

party variation can be instantiated.
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3.3.2 Pre-arranged Deposits

Another straight-forward way for making items generatable is to deposit items with T

ahead of time. For example, a merchant P who sells a software program iP can deposit a

copy of it with T and obtain a certi�cate cert = SigT (dP ), from T. The permit for this

item will include this certi�cate. Pre-arranged deposits are used in other contexts, such

as software source-code escrowing, in order to facilitate transactions between mutually

suspicious parties. This instantiation is shown in Table 3.2.

Generic De�nition Instantiation

pP SigP (certjdQjajT), cert = SigT (dP )
bind(Q; iP ; dQ; a;T) construct pP as shown above, send it with a; return pP
verify(P; iQ; dP ;T) receive pP , a and check verifySig(certjdesc(iQ)jajT; pP ; VP ) and

verifySig(dP ; cert; VT ); return pP , a
extrAuth(pP ) extract cert; dQ; a;T from pP , check verifySig(certjdQjajT; pP ; VP ), re-

turn a

extrExp(pP ) extract cert; dQ; a;T from pP , check verifySig(certjdQjajT; pP ; VP ), re-
turn dQ

extrItem(pP ; RT ) extract cert from pP , verifySig(dP ; cert;T), retrieve corresponding iP
from storage, and return it.

matchExp(desc; item) desc
?
= desc(item)

Table 3.2: Instantiating the Generic Protocol for Pre-arranged Deposits

Claim 10 The construction described in Table 3.2 constitutes a valid permit according

to the requirements in Section 3.2.2.

Proof :

� Permit e�ectiveness: From the de�nition of pP in Table 3.2 , it is easy to see

that the conditions for permit e�ectiveness are met.

� Permit integrity: If the digital signature scheme is secure, no one can take the

permit pP and create a new fake permit p0P such that verifySig(certjdQjajT; p
0

P ;P)

evaluates to true. Thus the premise of the permit integrity condition cannot be

true. Therefore, this instantiation satis�es the permit integrity condition.
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� Permit con�dentiality: From the de�nition of pP in Table 3.2, pP contains no

information about iP other than desc(iP ). Thus, this instantiation satis�es the

permit con�dentiality condition.

� Permit correctness: verify(P; iQ; dP ;T) successfully returns the received permit

pP and authenticator a only if verifySig(desc(iQ); cert; VT ) evaluates to true. The

same test is used in both extrExp(pP ) and extrAuth(pP ). Therefore these two primi-

tives would successfully return desc(iQ) and a respectively. extrItem(pP ; ST ) returns

iP . matchExp(dP ; iP ) is trivially true. Therefore, this instantiation satis�es the per-

mit correctness condition.

3.3.3 Other Techniques

Another way to achieve cryptographic binding is to use encryption. But unlike signatures,

there is no easy way to verify an encryption without actually doing the decryption. The

problem then is to �nd a way to make veri�able encryptions. At the outset, this might

seem a contradiction in terms: the very goal of encryption is to leak no information about

what is encrypted. In the next section, we see that we can make veri�able encryptions

of certain classes of items without leaking additional information that might lead to an

attacker recovering the items themselves.

3.4 Generatability via Veri�able Encryption

In general, a veri�able encryption scheme consists of:

� A function desc() as de�ned earlier that takes a string s and returns its description

p.

� a veri�able encryption algorithm VE() and a corresponding decryption algorithm

VD() such that

{ VE(s)! c, and

{ VD(c)! s.

� a protocol V() such that V(c; p)! true i� VD(c) = s and desc(s) = p.

The intent is that the encryption and decryption algorithms behave as usual with any

cryptosystem. In addition, each string in the domain of the encryption algorithm can
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be described by another string. Given a ciphertext a and a string purported to be the

description of the corresponding secret plaintext s, the VD() predicate can be used to

verify if a will indeed yield s on decryption.

As far as I know, the notion of publicly veri�able encryption was �rst mentioned by

Stadler in [Sta96]. He used publicly veri�able encryption as a building block for achieving

publicly veri�able secret sharing. He gave constructions for publicly veri�able encryption

of discrete logarithms and eth roots. However, there does not appear to be an easy way

to embed additional information (such as the description of the expected items) into the

encryption. Therefore, Stadler's techniques are not suitable for constructing permits for

optimistic fair exchange. Also, his constructions were applicable to a speci�c encryption

scheme only.

Here, I present a permit construction scheme based on veri�able encryption that can

work with arbitrary public-key encryption mechanisms.

As a building block, we use a certi�ed claw generation scheme (CCGS) [BG96]. A

CCGS is a 2-out-of-2 veri�able secret sharing system. Given a secret s and a public

description p of s, a CCGS will generate two shares (or \claws") s0 and s1 of s, such that

anyone who knows p and a share can determine that it is a valid share but infer no more

information about s. Someone who knows both s0 and s1 can combine them to recover

s. More concretely, a CCGS consists of the following functions:

� a predicate match() that takes two strings p and s as arguments,

� a sharing algorithm share() which takes a string s as input and returns

{ two shares s0 and s1, and

{ a public string v,

� a share veri�cation predicate verifyShare() corresponding to the secret sharing algo-

rithm which takes one of the two shares as input, along with v and p.; After a valid

sharing, verifyShare(i; si; v; p), where i 2 f0; 1g, will evaluate to true i� match(p; s)

is true and si and v were produced by share(s), and

� A reconstruction function reconstruct() corresponding to the secret sharing algo-

rithm which takes both shares as input and returns the original secret (i.e., recon-

struct(s0; s1) produces s i� s0 and s1 were produced by share(s)).

The sets from which p and s are drawn and the domains and ranges of the various

functions and predicates must be speci�ed when a CCGS is instantiated concretely.
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In addition, we assume an encryption scheme consisting of a probabilistic encryption

algorithm E() and a corresponding decryption algorithm D() such that for a random r

and plain-text x, D(E(r; x)) = x. We also assume a collision-resistant, one-way hash

function h().

Given the tools above, the generic permit-trans protocol for veri�able encryption per-

mits is constructed as shown in Figure 3.3. The sender possesses a secret string s, and an

arbitrary token t to be embedded in the permit. The purpose is to send a permit based

on veri�able encryption of s to the receiver without revealing s. The receiver possesses

the description of s (say p) and t. At the end of a successful protocol run, the receiver

will have a permit which contains, with a high probability, s bound with t.

The sender starts by generating k pairs of certi�ed shares of s. It probabilistically

encrypts each share and commits to all 2k encryptions by hashing them together. The

hash H is sent to the receiver, along with the set of k public strings V = fvig, gener-

ated by share(). The receiver generates a random k�bit challenge and sends it to the

sender. Depending on the value of the ith bit of the challenge, the sender reveals the

corresponding share of the ith pair of certi�ed shares, along with the random value used

to probabilistically encrypt it, and the encryption of the other share.

The receiver �rst re-computes the opened encryptions by re-encrypting each opened

share (sib) and its corresponding random value (ri). It then re-computes the overall hash

to make sure that the set of 2k encryptions is the same set that was committed in H.

Then it veri�es that the share in the opened encryption is a valid share by using the

verifyShare function.

From each pair of encryptions Ei0 = E(ri0; si0jt); Ei1 = E(ri1; si1jt); the receiver will

get the plain text of one of them (say Ei0). The share from this opened encryption (si0)

has to be stored. The un-opened share (Ei1) is the i
th component of the permit. T can

decrypt this permit component. When the share (si1) is recovered from that permit, it

can be combined with the stored share using reconstruct() to yield the original secret s.

Thus, at the end of the protocol, the receiver will have a permit in the form of set of k

potential components. Only one of the components needs to be used.

The receiver checks only one encryption from each pair. However, the sender needs

to compute and commit to all 2k encryptions before knowing which encryptions will be

checked in each of the k pairs. Therefore, the probability that the sender can escape

undetected after cheating (i.e., sending random strings which cannot be used as permit

components) is 2�k.
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Sender Receiver
Input : VEPSend(s; t; E()) Input : VEPReceive(p; t; E())

Generate k pairs of shares of s :
f(s00; s01); : : : ; (sk0; sk1)g;V = fv1 : : : vkg
Probabilistically encrypt each share :
For i = 1 : : : k :
Ei0 = E(ri0; si0jt); Ei1 = E(ri1; si1jt)

Commit by hashing all encryptions:

H = h(E00jE01j : : : jEk0jEk1) �
Commitment H;V
���������������!

Compute a challenge :
C = fci 2R f0; 1g : i = 1 : : : kg

 �
Challenge C

��������������
Compute response :
For i = 1 : : : k :
ri = (sib; rib; Eib); where b = ci
R = fri : i = 1 : : : kg

�
Response R

��������������!
Check for i = 1 : : : k; j = 0; 1
(setting b = ci) :
compute and check all Eij
Eib = E(rib; sibjt)
verifyShare(b; sib; vi; p)?

H
?
= h(E00jE01j : : : jEk0jEk1)

exit if any check failed
Add piSender = Eib to set pSender Add piSender = Eib to set pSender

Add sib to storage

Output : pSender Output : pSender

Figure 3.3: Generic Protocol for Permit Generation using Veri�able Encryption
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Let us name the input primitives of the sender and receiver VEPSend and VEPRe-

ceive respectively. Then we can use the instantiation shown in Table 3.3 to \plug" the

veri�ably encrypted permits into the generic protocol for the fair exchange of generatable

items.

Generic De�nition Instantiation

pP E(rib; sibjdQja); b = 0 or b = 1; i 2 f1 : : : kg
bind(Q; iP ; dQ; a;T) send a; VEPSend(iP ; dQja;EncT ()); output pP = fpiP ; i = 1 : : : kg; a
verify(P; iQ; dP ;T) receive a; VEPReceive(dP ; desc(iQ)ja;EncT ()); output

pP = fpiP ; i = 1 : : : kg; a
extrAuth(pP ) pick some piP and decrypt it to recover sibjdQja, return a

extrExp(pP ) pick some piP and decrypt it to recover sibjdQja, return dQ
extrItem(pP ; RT ) pick some piP and decrypt it to recover sibjdQja, return sibji.

matchExp(desc; item) if desc
?
= desc(item) return true; otherwise if item was of the form s0ji,

then retrieve stored complement s00 corresponding to pisender , compute

s = reconstruct(s0; s00), return desc
?
= desc(s)

Table 3.3: Instantiating the Generic Protocol for Veri�able Encryption Permits

Note that only T can execute extrExp() and extrAuth(), since they implicitly require

access to T's decryption key. Also, in this instantiation, a post-processing step is required

at the end of protocol resolve: the player who initiated the protocol needs to use the

reconstruct() algorithm to combine the share received from T with the corresponding

share added to the local storage during protocol permit-trans. Note also that protocol

permit-trans results in a set of k permit components. Any one of these can be used

during a subsequent run of protocol resolve. If the item reconstructed at the end of

protocol resolve does not match expectations, protocol resolve be re-run so that T can

use a di�erent permit component.

Claim 11 The construction described in Table 3.3 constitutes a valid permit according

to the requirements in Section 3.2.2.

Proof : Protocol permit-trans transfers k pairs of potential permit components. At the

end of the protocol, k of these, one from each pair, become potential permit components.

They are denoted by fpiP ; i 2 1 : : : kg.

� Permit e�ectiveness: From the de�nition of pP in Table 3.3 , it is easy to see

that the conditions for permit e�ectiveness are met.



3.4. GENERATABILITY VIA VERIFIABLE ENCRYPTION 59

� Permit integrity: If the encryption scheme is non-malleable [MvOV96, Section

8.7.3], the receiver cannot make any changes to the permit components created by

the sender, without invalidating them. The receiver can of course generate a fake

permit that satis�es the premise of the permit integrity condition; but in this case,

the consequence of the condition is also true, since such a permit (supposedly created

without knowing iP beforehand) cannot yield a share that can be used to reconstruct

iP . Therefore, this instantiation satis�es the permit integrity requirement.

� Permit con�dentiality: The sender will open only one of each pair. The shares

in each pair are chosen randomly. Thus, knowing one share does not reveal any

additional information about the secret itself. If the encryption scheme used to

construct permits is secure, the receiver will not be able to retrieve the other share,

embedded inside the unopened half of each pair. Thus, this instantiation satis�es

the permit con�dentiality condition.

� Permit correctness: If piP is correctly formed, then the consequences of the rule

is satis�ed. If verify(Q; pP ; iQ; dP ;T) returns successfully, there is a 2�k probabil-

ity that all of the k permit components are incorrectly formed. Therefore, this

instantiation satis�es the permit correctness condition, with probability 1-2�k.

Now, I show how to construct CCGS for discrete logarithms and eth roots. These

constructions can be plugged into the generic protocol to yield speci�c permit generation

schemes.

3.4.1 Veri�able Encryption of Discrete Logarithms

Bellare and Goldwasser [BG96] presented a CCGS for the Di�e-Hellman cryptosystem.

We can plug their technique into our generic protocol. A CCGS for discrete logarithms

is as follows. Choose prime numbers P and Q such that P = 2Q + 1. Pick an additive

subgroup G of Z�

P which has order Q. Let g be a generator of G. We have a secret value

s mod Q and a public value p = gs mod P . Our goal is to veri�ably encrypt s. We

instantiate the generic CCGS as follows:

� match(p; s): gs
?
= p mod P ,

� share(s):

{ two shares s0 2R ZQ and s1 = s0 � s mod Q, and
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{ a public string v = gs0 mod P

� verifyShare(i; si; v; p): p
igsi

?
= v mod P; i = f0; 1g

� reconstruct(s0; s1): s0 + s1 mod Q

In order to be a valid instantiation, it must be the case that one share alone does

not reveal any additional information about the secret s. s0 is chosen randomly from G.

Thus, if there is an algorithm that takes si; p; and v as input and outputs s, then it can

be used to determine the discrete logarithm of any number p in G. In other words, this

construction is a computationally secure CCGS as long as it is computationally infeasible

to �nd discrete logarithms in G.

3.4.2 Veri�able Encryption of eth roots

The following construction can be plugged into our generic protocol to realise a permit

generation scheme based on eth roots. Let n be the product of two large distinct primes

and ed � 1 ( mod �(n) ) as in the usual setup of RSA. (All arithmetic is performed

modulo n.) We have a secret value s and a public value p = se mod n (implying that

s = pd mod n). We instantiate the generic protocol as follows.

� match(p; s): se
?
= p,

� share(s):

{ two shares s0 2R Zn (such that s0 is relatively prime to n) and s1 = s=s0, and

{ a public string v = s0
e

� verifyShare(i; si; v; p): if i = 0 sei
?
= v; if i = 1 seiv

?
= p

� reconstruct(s0; s1): s0s1

In order to be a valid instantiation, it must be the case one share alone does not reveal

any additional information about the secret s. s0 is chosen randomly from Zn. Thus, if

there is an algorithm that takes si; p; and v as input and outputs s, then it can be used to

determine the eth root of any number p in Zn, thereby breaking the RSA cryptosystem.

In other words, this construction is a computationally secure CCGS as long as it is

computationally infeasible to break the RSA cryptosystem in Zn.

Any object that can be reduced to a veri�ably shareable primitive object (such as

discrete logarithms, eth roots etc.) can be veri�ably encrypted. Consequently, such
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objects can be exchanged fairly using the protocol in Section 3.2.1. In [ASW97c], Victor

Shoup has shown how various types of digital signatures and coins in certain electronic

payment schemes can be reduced to discrete logarithms or eth roots.

3.5 Variations on the Theme

3.5.1 Veri�ability of Third Party

As mentioned in 2.2.3, it is not clear how one can guarantee veri�ability of third party

while preserving non-invasiveness. Consider the following model as an example of a

limited solution to this problem. All items are sent with non-repudiation of origin (NRO)

tokens. Before a player attempts to \use" an item (e.g., enforcing a contract or cashing

a cheque), he will be asked to produce the non-repudiation token. Inability to produce a

valid NRO token for an item is considered incorrect behaviour. In this model, the third

party can be held liable if it issues an abort token to the originator of an item while

extracting, and sending the item to the other player, along with an NRO token.

However, this solution is not entirely satisfactory. Firstly, there must be a way to

associate the \use" of the item with having to produce an NRO token. It is possible to

do this in some cases (e.g., electronic payment systems), even though it implies that the

non-invasiveness property may no longer hold. Secondly, if a player is unable to produce

an NRO token, it is clear that he has colluded with one other player. But it is not possible

to unambiguously identify the collaborator { it may be the third party, or it may be the

originator of the item, colluding with the receiver in an attempt to frame the third party.

It remains an open problem to �nd a technique which guarantees veri�ability of third

party while being non-invasive at the same time.

3.5.2 Generatability via O�-line Coupons

We can avoid the relatively expensive cut-and-choose approach for veri�able encryption

(i.e., where the recipient cuts out k encryptions and chooses the other k to be opened)

if we allow the possibility of pre-processing. In the pre-processing stage, each player

P generates a set of random strings. For each string s0, it generates the corresponding

public string v of the share procedure of a CCGS. Then, it presents the set of corresponding

pairs f(s0; v)g to T. T encrypts the random string with its own public key, and issues a

certi�cate containing the public string stating that it knows the secret share corresponding

to it. A certi�cate looks thus: cert(v) = SigT fvjE(s0)g.
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During the fair exchange of a secret string s (corresponding to a public string p known

to both parties) P picks an s0 for which it has a certi�cate, computes s1 in such a way

that share(s) procedure would have yielded s0; s1; and v, and presents s1 along with the

certi�cate for s0 to the other player Q. Q can check that verifyShare(1; s1; v; p) is true and

that cert(v) is a valid certi�cate. In case of resolution, Q can present cert(v) to T and be

guaranteed that T can extract a s0 from it.

This is essentially the same as generatability via pre-arranged deposits, with a subtle

twist: the actual items need not be known at the time of deposit, and players do not have

to reveal the actual items to T at any time.

3.6 Summary and Conclusions

3.6.1 Summary

In this chapter, I have given a formal de�nition of generatable items, and described

an optimistic fair exchange protocol for generatable items, guaranteeing strong

fairness. I have described some ways of adding generatability to arbitrary items. The

most notable among these is the use of veri�able encryption techniques. I have

been able to use well-understood cryptographic primitives in a novel manner to make

items generatable.

3.6.2 Usage Scenarios

Now, we can revisit the scenario described in Section 1.2. The problem of making a

reservation can be solved using the contract signing protocol of Section 2.2.2. The same

contract serves as both Alice's non-repudiable reservation request, and BobAir's non-

repudiable acknowledgement of reservation. The protocol provides strong fairness |

therefore, either both BobAir and Alice end up with the contract or neither does. It may

be necessary to separate the reservation request and its acknowledgement. If these two

items are implemented in the form of publicly veri�able digital signatures, they are for-

wardable. Then we can use the exchange protocol for forwardable items in Section 2.3.2.

If the items are implemented as digital signatures that can be reduced to discrete loga-

rithms or eth roots, we can use veri�able encryption to make them generatable.

The actual purchase of the ticket is more complicated. Assume that the ticket is a

digital signature by BobAir. It can be down-loaded onto a portable device, such as a

smartcard, or can be converted into a bar code and printed out on paper, which in turn
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can be later scanned in at the airport and veri�ed. Such a ticket is forwardable, and can

be made generatable, for example, using veri�able encryption.

Generatability of the payment depends on the particular payment system used. In

some payment systems, the critical payment messages can be identi�ed and reduced

to a discrete logarithm or eth root. This is the case with the various credit-card pay-

ment protocols (in Section B.0.1, I describe a simpli�ed version of such a protocol called

iKP [BGH+95]). The critical message in these payment systems is a digital signature,

which can be veri�ably encrypted. In this case, the exchange protocol for generatable

items in Section 3.2 can be used.

Payment messages in some payment systems are forwardable. An example is an

electronic cheque system such as the FSTC system [FST95]. Alice's cheque in favour of

BobAir can be veri�ed by T. BobAir can take the role of the originator and send the

ticket �rst. If it doesn't hear from Alice, it can deposit the ticket with T and obtain an

a�davit.

3.6.3 Conclusions

The techniques described in this chapter can add generatability to a large class of items,

thereby enabling strong fairness while exchanging them. However, we still need to be

able to support the possibility of subsequent disputes for two reasons.

Firstly, there still will remain cases where strong fairness is not possible using the

optimistic approach. If non-optimistic approaches are not suitable (e.g., because the cost

of the non-optimistic exchange exceeds the value of the items), then weak fairness will

still be reasonable. However, as we discussed in Chapter 2, the optimistic fair exchange

protocol merely collects evidence (in the form of a�davit token). There must be an

external framework where the evidence can be used.

Secondly, even after an exchange is concluded fairly, there may still be subsequent

disputes. For example, along with an airline ticket, Alice might successfully purchase

an online tour guide which matches a description like \Vacation in Wonderland, 123rd

Edition, 1998." Later, she might discover the book she received had portions missing.

Alice can use the non-repudiation of origin token to prove the exact text she received

during the exchange. In Chapter 4, we look at protocols for non-repudiation of origin

and receipt.
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4.1 Introduction

4.1.1 Motivation

Non-repudiation is an essential service required for transactions with legal signi�cance.

The International Standardisation Organisation (ISO) has recently standardised tech-

niques to provide non-repudiation services in open networks. Late versions of the draft

ISO standards [ISO97] identify various classes of non-repudiation services. Two of these

are of particular interest. Non-repudiation of Origin (NRO) guarantees that the origina-

tor of a message cannot later deny having originated that message. Non-repudiation of

Receipt (NRR) guarantees that the recipient of a message cannot deny having received

that message.

Non-repudiation for a particular message is obtained by constructing a non-

repudiation token. The non-repudiation token must be veri�able by the intended re-

cipients of the token (e.g., in the case of NRO, the recipient of the message; in the case of

NRR, the originator of the message), and in case of a dispute, by a mutually acceptable

arbiter.

4.1.2 Techniques

The draft ISO standards divide non-repudiation techniques into two classes. Asymmet-

ric non-repudiation techniques are based on digital signature schemes using public-key

cryptography. The non-repudiation token for a message is a digital signature on the

message and some other pieces of related information. Non-repudiation is based on certi-

�cation of the signer's signature veri�cation key (in the rest of this chapter use of the term

\veri�cation key" means a signature veri�cation key) by a certi�cation authority(CA).

Trust in this CA can be minimised by an appropriate registration procedure. For example,

the signer and the authority may be required to sign a paper contract listing the signer's

and CA's veri�cation keys, responsibilities, and liabilities, possibly in front of a notary

public. In the worst case, the CA could cheat the user by issuing a certi�cate with a

veri�cation key chosen by an attacker. But the supposed signer could deny all signatures

based on this forged certi�cate by citing the contract signed during registration. Thus,

trust in the CA is reduced to trust in the veri�ability of the registration procedure.

Symmetric non-repudiation techniques are based on symmetric message authentica-

tion codes (MACs) and trusted third parties that act as witnesses. The trusted third

party is responsible for generating and verifying non-repudiation tokens.
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4.1.3 Issues

The main di�culty in using asymmetric techniques is the computational cost involved

with public-key based digital signature schemes (henceforth referred to as \traditional

digital signatures"). This is a particularly serious issue when anemic portable devices

(like mobile phones or smartcards) are involved. Another di�culty is with key revocation.

Information about revoked keys is disseminated using certi�cate revocation lists (CRL).

Veri�ers are expected to periodically refresh their copies of the CRL. Without an up-to-

date CRL, a veri�er runs the risk of accepting a signature made with a revoked key.

When non-repudiation is provided using only symmetric techniques, computational

cost is not a problem | generating and verifying message authentication codes are typ-

ically low-cost operations compared to digital signature operations. However, the signer

has to trust the third party unconditionally, which means that the third party could cheat

the user without giving the user any chance to deny forged messages. One could reduce

this trust by using several third parties in parallel or by replacing the third party by

tamper resistant hardware. These two approaches increase both cost and complexity but

neither of them solves the problem completely.

In this chapter, I present a novel non-repudiation technique called Server-Supported

Signatures, S3. It is based on one-way hash functions and traditional digital signatures.

Its e�ciency is comparable to the e�ciency of symmetric techniques. The technique relies

on the use of third parties called signature servers to aid in generating non-repudiation

tokens. However, unlike with the ISO symmetric techniques, signature servers in S3 are

veri�able: if they misbehave, the victim can prove the fact in a dispute.

Ordinary users in S3 need only be able to verify traditional digital signatures, but not

generate them. Signature servers are responsible for generating digital signatures. For

some signature schemes, such as RSA with a public exponent of 3, verifying signatures is

signi�cantly more e�cient than generating them.

This chapter is organized as follows. The actual design of S3 is described in Sections

4.2 and 4.3. Some variations are presented in Section 4.4. In Section 4.5, potential

applications are outlined. Performance and storage costs are discussed in Section 4.6,

and Section 4.7 concludes with a brief review of related work.
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4.2 Server-Supported Signatures (S3)

4.2.1 Model and Notation

There are three types of entities in an S3 system.

� Users { participants in the system who wish to avail themselves of the non-

repudiation service while sending and receiving messages among themselves.

� Signature Servers { special entities responsible for actually generating the non-

repudiation tokens on behalf of the users.

� Certi�cation Authorities { special entities responsible for linking veri�cation keys

with identities of users and servers.

Signature servers and certi�cation authorities are veri�able third parties from the

users' point of view.

One-way hash functions can be recursively applied to an input string. The notation

hi(x) denotes the result of applying h() i times recursively to an input x. That is,

hi(x) = h(h(h(: : : h
| {z }

i times

(x) : : :)))

Such recursive application results in a hash chain that is generated from the original

input string:

h0(x) = x; h1(x); : : : ; hi(x)

All entities agree on a collision-resistant one-way hash-function h() and a traditional

digital signature scheme. Further, the collision-resistance, and one-wayness properties

are assumed to hold over iterations. Entities should \personalise" the hash function. For

example, this can be done by always including their unique name as an argument: using

h(P; x), where P is the entity computing the one-way hash. We use hP () to refer to the

personalised hash function used by P. The users' security against its signature server

depends on the one-way property of hP (), which must hold even against the servers. In

practice, this is not a problem because hash functions such as SHA-1 [NIS95] are one-way

for all parties.

In order to minimize the computational overhead for users, hP () must be e�ciently

computable, and traditional digital signatures must be e�ciently veri�able. Only signa-

ture servers and certi�cation authorities need to have the ability to generate traditional



4.2. SERVER-SUPPORTED SIGNATURES (S3) 69

signatures. SHA-1 as hash function and RSA with public exponent 3 as traditional sig-

nature scheme would be reasonable choices.

Each user, P generates a secret key, KP , randomly chosen from the range of hP ().

Based on KP , P computes the hash chain K0
P ;K

1
P ; : : : K

n
P , where

K0
P = KP ; K

i
P = hiP (KP ) = hP (K

i�1
P ):

VP = Kn
P constitutes P's root veri�cation key. It will enable P to authenticate n messages.

This is not a limitation because it is possible to link a new signature chain to the old one:

before a signature chain is completely consumed, P can generate a new chain and send

a non-repudiable request (signed with the veri�cation key from the old chain) to the CA

for a certi�cate on the new veri�cation key.

4.2.2 Initialisation

To initialise the system, each signature server S generates a pair of signing and veri�cation

keys (SS ; VS) of the digital signature scheme. Each certi�cation authority, CA, does

the same. The CA is responsible for veri�ably binding a user O (server S) to her root

veri�cation key VO (its veri�cation key VS). We assume that the registration procedure

is constructed such that CA becomes a veri�able third party.

To participate in the system, a user O chooses a signature server S that will be

responsible for generating signatures onO's behalf, generates a random secret keyKO, and

constructs the hash chain. As described below, O can request S to transfer the signature

generation responsibility to another signature server S0, if required (e.g., because O is a

mobile user who wishes to always use the closest server available).

O submits the root veri�cation key VO = Kn
O to a CA for certi�cation. A certi�cate

for O's root veri�cation key is of the form: CertO = SigCA(OjnjVOjS). We ignore

all information typically contained in a certi�cate but not relevant to the discussion

at hand, e.g., organizational data such as serial numbers and expiration dates. The

registration performed by O and CA must be veri�able, as discussed above. CA may

make the certi�cate available to anyone via a directory service. O then deposits the

certi�cate received from CA with S.

Each signature server S acquires a certi�cate containing VS from its CA. As these are

ordinary public key certi�cates, I do not describe them here. For the sake of simplicity,

we do not include the certi�cates in the following protocols. They might be attached
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to other messages or retrieved using a directory service. We assume that the necessary

certi�cates are always available to anyone who needs to verify a signature.

4.2.3 Generating NRO Tokens

The basic idea is to exploit the digital signature generation capability of a signature server

to provide non-repudiation services to ordinary users. The basic protocol, providing non-

repudiation of origin, is illustrated in Figure 4.1. We assume that a user O wants to send

a message m along with an NRO token to some recipient R. The �rst protocol run uses

i = n; i is decreased during each run.

1. O begins by sending (O;m; i) to its signature server S along with O's current ver-

i�cation key Ki
O in the �rst protocol ow. (In case O does not want to reveal the

message to S for privacy reasons, m can be replaced by a randomised hash of m,

computed using a collision-resistant hash function such that the hash does not leak

any information about m.)

2. S veri�es the received veri�cation key based on O's root veri�cation key (and O's

certi�cate obtained from CA) by checking hn�iO (Ki
O)

?
= VO. S has to ensure that

only one NRO token can be created for a given (O; i;Ki
O). If a message on behalf

of O containing Ki
O has not yet been signed, S signs (OjmjijKi

O), records K
i
O as

consumed, and sends the signature back to O in the second ow. SigS(OjmjijK
i
O)

is called the candidate non-repudiation token.

3. O veri�es the received signature and stores it. It also records Ki
O as con-

sumed by replacing i by i � 1. The NRO token for R now consists of the pair:

(SigS(OjmjijK
i
O);K

i�1
O ). O produces this token, which actually authenticates m,

by revealing Ki�1
O .

In Figure 4.1, we assumed that the NRO token is sent to R via S in the third ow.

Alternatively, O can send the token directly to R.

Ki
O is called the i-th token veri�cation key. It corresponds to the (n � i + 1)th

non-repudiation token, SigS(OjmjijK
i
O);K

i�1
O . Note that O must consume the token

veri�cation keys in sequence and must not skip any of them. In particular, O must

not ask for a signature using Ki�1
O as token veri�cation key unless she has received S's

signature under Ki
O. Otherwise, S could use that to create a fake non-repudiation token,

which O cannot repudiate during a dispute.
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New Notation

Ki
O O's i-th token veri�cation key

O S R

���
O;m; i;Ki

O
�����������!

 �
SigS(OjmjijK

i
O)

�������������

���
Ki�1

O
����������! �

SigS(OjmjijK
i
O); K

i�1

O
�������������������!

Figure 4.1: Protocol providing non-repudiation of origin.

4.2.4 Dispute Resolution

In case of a dispute, R can submit a pair (x; y) to an arbiter and claim that they constitute

an NRO for message m using the i-th token veri�cation key of O. The arbiter will do the

following:

� extract the veri�cation keys Kn
O and VS, and verify that they are certi�ed by CA,

� verify that S's signature on the token is valid: verifySig(Ojmjijh(y); x; VS )?,

� that the token veri�cation key Ki
O is in fact a hash of the alleged pre-image in the

token, and

� that the root veri�cation key Kn
O can be derived from the token veri�cation key by

repeated hashing: hn�iO (Ki
O)

?
= Kn

O.

If these checks are successful, then the originator is allowed the opportunity to re-

pudiate the token by proving that either CA or S cheated, by showing a di�erent non-

repudiation token corresponding to the same token public key.

If CA has cheated by certifying an attacker's public key in O's name, O can show

its legitimate certi�cate by CA, on a di�erent root veri�cation key. Otherwise CA will

be asked to prove that the root veri�cation key was registered by O (i.e., by showing

the signed contract with O). If S has cheated, O can prove it by showing a di�erent

non-repudiation token corresponding to the same token veri�cation key.
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When R receives an NRO token for a message from O, he will do the same set of tests

listed above. The trust placed on this token by R depends on his trust on both CA and

S because in a subsequent dispute, O may repudiate the message if she can convince a

veri�er that either S or CA cheated. In traditional digital signature schemes, the recipient

of a signature takes a similar risk based on the trust placed on the certi�cation authorities.

This implies that R must have a certain trust relationship with CA and S. (For example,

such trust can be based on malpractice insurance: then R knows that either O cannot

repudiate its non-repudiation tokens, or, if O did manage to repudiate them by showing

that S or CA is a cheater, then any losses that Rmay su�er as a result will be compensated

for.)

If CA is honest, a cheating R has to produce an NRO token of the form:

(SigS(Ojm
0jijKi

O); Ki�1
O ), in order to falsely claim that O has sent a message m0. If

O has not revealed Ki�1
O yet, then one-wayness of hO() on iterates implies that anyone

else will �nd it computationally infeasible to generate this NRO token, even if Ki
O is

known. If O has already revealed Ki�1
O , it must have sent Ki

O to S before. According to

the protocol, O reveals Ki�1
O only if she has received a signature from S under Ki

O which

satis�ed her. Therefore, O can show a di�erent token corresponding to the same token

veri�cation key.

Suppose an adversary of O successfully breaks the one-wayness of hO() and obtains

an NRO token of the form (SigS(Ojm
0jijKi

O); y), where hO(y) = hO(K
i�1
O ). If y is

di�erent from Ki�1
O , then on being challenged with this NRO token, O can reveal Ki�1

O ,

proving that the system has been broken. This is known as the fail-stop property [P�96].

Assuming that hO has a uniform distribution, the domain used must be larger than the

range of hO in order to achieve a reasonable level of fail-stop property. We can do this

by slightly modifying the building procedure to include a random padding to the input

of hO during the computation of every link in the chain. Whenever O tries to repudiate

a signature by claiming that an attacker has broken the one-wayness of hO(), O can be

required to reveal several successive pre-images from its hash chain. This implies that in

each chain, some initial links are left unused during normal operation.

4.3 S3 for Non-repudiation of Origin and Receipt

Non-repudiation of receipt (NRR) can be easily added to the basic protocol. Before

sendingKi�1
O to R, S can ask R for an NRO token for NRR:m, which is then passed on to O.
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The construct \NRR:m" is taken to mean \This is to acknowledge that I receivedm." This

is illustrated in Figure 4.2. The NRR token consists of: (SigS(RjNRR:mjjjK
j
R);K

j�1

R ).

O S R

����
O;m; i;Ki

O; R
��������������!

 ���
SigS(OjmjijK

i
O)

��������������� �
SigS(RjNRR:mjjjK

j
R)

�����������������!

 ������
[Kj�1

R ]
�������������

 �
SigS(RjNRR:mjjjK

j
R)

�����������������

�����
[Ki�1

O ]
������������!

 �����
K
j�1

R
������������ �

SigS(OjmjijK
i
O);K

i�1

O
������������������!

Figure 4.2: Protocol providing non-repudiation of origin and receipt.

Square brackets ([ ]) indicate that the message contained within them is sent via

a con�dential channel. As this protocol is just two interleaved instances of the basic

NRO protocol, it still guarantees that O and R can repudiate all forged NRO and NRR

tokens, respectively. Note that this protocol actually implements fair exchange of the

NRO token for m and its NRR token, using S as an on-line trusted third party. If S

behaves dishonestly, no fairness can be guaranteed: O might not receive the NRR token

or R might not receive the NRO token.

The protocol as depicted in Figure 4.2 allows the possibility that R may refuse to send

the NRR token after having received the candidate NRR token from S (the accompanying

plain text of which containsm). An alternative approach is to include only a commitment

to the message m in the candidate NRO token instead of the actual message itself. How-

ever, R has to trust that S will in fact send m after R has already acknowledged having

received it. Note that if O and R happen to use di�erent signature servers, additional

inter-server message ows will be necessary.

The protocol in Figure 4.2 allows the possibility that either the NRO token or the

NRR token may be optional, at the cost of an extra signature by S. The entire protocol

has eight message ows. Further, the NRO and NRR tokens are linked only by the hash
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O S R
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�����������������!
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Figure 4.3: Protocol providing integrated non-repudiation of origin and receipt.

of the message. In environments where both NRO and NRR are mandatory, a modi�ed

protocol as shown in Figure 4.3 can be used. It results in a combined NRO and NRR

token:

SigS(OjRjNRX:mjijjjK
i
O jK

j
R);K

i�1
O ;Kj�1

R

The modi�ed protocol has only seven message ows and requires only a single signature

by S.

4.4 Variations on the Theme

4.4.1 Reducing Storage Requirements for Users

In order to deny forged non-repudiation tokens, O has to store all signatures received

from S, which might be a bit unrealistic if O is not even able to compute signatures. One

can easily avoid this storage problem by including an additional �eld H in S's signature

that serves as a commitment on all the previous signatures made by S for that hash chain;

i.e., an NRO token looks like: NROi = (SigS(OjmijijK
i
OjH

i);Ki�1
O ).

The value Hi is recursively computed by Hn = CertO and Hi�1 = f(Hi;NROi).

The function f() is a collision-resistant one-way hash function.1 NROi is an NRO token

on message mi using the token veri�cation key Ki
O.

1Note that f() may be the same as hO(). However, collision-resistance is a mandatory property for
f(). If S succeeds in breaking the collision-resistance of f(), it can forge signatures which O may not be
able to refute since O no longer retains all past signatures. As we saw in Section 4.2.4, collisions in hO()
are not equally catastrophic from the point-of-view of O.
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O has to store only the last value Hi and the last signature received from S. S has to

store all signatures, and has to provide them to O in case of a dispute. If S cannot provide

a sequence of signatures that �ts the hash value contained in the last signature received

by O, the arbiter allows O to repudiate all signatures and assumes that S cheated.

This idea of chaining previous signatures was used by Haber and Stornetta [HS91] for

the construction of a time stamping service, based on the observation that the sequence

of messages in Hi cannot be changed afterwards. One can combine their protocols with

mine, using S as a time stamping server, as explained in Section 4.5.1.

4.4.2 Increasing Robustness

As mentioned above, S must sign exactly one message for a given user per veri�cation

key (Ki
O) in the hash chain. However, anyone can send a signature request in the form

of the �rst ow, i.e., (O;m; i;Ki
O).

If S does not subsequently receive the corresponding pre-image of the current veri�ca-

tion key (Ki�1
O ), the current veri�cation key is rendered invalid in any case. This implies

that an attacker can succeed in invalidating an entire chain of a user by generating fake

signature requests in her name.

An obvious solution would be to require O and S to share a secret key to be used for

computing (and verifying) a message authentication code over the �rst protocol ow. An

alternative solution is to give users the ability to invalidate token veri�cation keys without

having to create a new chain. The construction is only slightly more complicated than

the basic protocol: instead of one chain, each user generates two chains: Kn
O; : : : ;K

0
O and

K̂n
O; : : : ; K̂

0
O.

Each token veri�cation key is now a pair of hash values, say, (Ki
O; K̂

j
O). If O receives

the candidate token SigS(OjmjijK
i
OjK̂

j
O), she can either accept or reject it. O accepts

by revealing Ki�1
O . The next token veri�cation key is (Ki�1

O ; K̂j
O). O rejects by revealing

K̂j�1

O . The next token veri�cation key is (Ki
O; K̂

j�1

O ). On receiving Ki�1
O or K̂j�1

O ,

S creates the non-repudiation token SigS(OjmjijjjK
i�1
O jK̂j

O) or the invalidation token

SigS(OjINV:mjijjjK
i
OjK̂

j�1

O ) respectively.

The additional signature by S is necessary because for one signature

SigS(OjmjijjjK
i
O jK̂

j
O), it can easily happen that both Ki�1

O and K̂j�1

O become public.

That is, the combination of the �rst signature with one pre-image would not be unam-

biguous and recipient R could not depend on what he receives. Instead of making two

signatures, we could use the same trick as in Chapter 3 to save a signature: S can instead
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include two commitments h(aNRO) and h(aINV ) of two random numbers aNRO and aINV

in the �rst signatures. Then, S can release one of the two random numbers to O. The

random number together with the �rst signature serves as either the NRO token or the

invalidation token. Note that a cheating S could generate both tokens for the same token

veri�cation key; but S still remains veri�able because O could then easily prove that S

cheated, by showing the token received.

4.4.3 Support for Roaming Users

In the basic protocol, the trust placed on the signature server is quite limited | it is

trusted only to protect its secret key from intruders and to generate signatures in a

secure manner.2 This limited trust enables a mobile user to make use of a signature

server in foreign domains while travelling. Normally the signature server in the user's

home domain will be in charge of the user's hash chain. Whenever the user requests to

be transferred to a signature server in a di�erent domain, an agreement could be signed

by the user and the old signature server authorising the transfer of charge of the user's

hash chain. As usual, the pre-image of the current token veri�cation key, used to sign

this agreement will become the next token veri�cation key.

In other words, instead of having a single root veri�cation key certi�cate (which

includes the identity of the \home" signature server), a chain of veri�cation key certi�cates

could be used. The chain consists of the root veri�cation key certi�cate signed by the

home CA and one hand-o� certi�cate every time the charge for the user's veri�cation key

has changed hands:

SigCA(OjnjK
n
OjS0)

SigSl�1(OjnljK
nl
O jSl); for 0 < nl < n; l > 0

where, S0 = S and nl is the index of the token veri�cation key used to sign the request

for the lth hand-o� (from Sl�1 to Sl).

To e�ect a change in charge during a hand-o�, the following procedure is carried out.

1. The user O sends a hand-o� request to both the current signature server Sl�1 and

the intended signature server Sl. As this request must be non-repudiable, this step

2As mentioned in Section 4.2.4, the recipients of NRO tokens require additional assurance that their
losses can be compensated in case signature servers are shown to have behaved incorrectly.
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is essentially a run of the basic protocol to generate a NRO token with a message

that means \hand-o� from Sl�1 to Sl requested." Sl�1 will issue a candidate NRO

token for the request using the current token veri�cation keyKnl
O and O will validate

the token by revealing Knl�1

O .

2. When the NRO token is received and veri�ed by Sl�1, it generates a corresponding

hand-o� certi�cate described in the previous paragraph and sends it to both O and

Sl. It will no longer generate signatures on behalf of O for that hash chain unless

charge is explicitly transferred back to it at some point. In addition, it will store

both the hand-o� certi�cate and the corresponding NRO token.

3. When Sl has received both the NRO token and the hand-o� certi�cate, it will be

ready to generate signatures on behalf of O, starting with Knl�1

O as the �rst token

veri�cation key.

During a dispute, suppose the veri�er is presented with two di�erent chains of certi�-

cates. If the chains are completely di�erent, the dispute has to be resolved by verifying

the initial registration process by CA. Otherwise, the chains must diverge at some point.

There must be a single signature server who issued two di�erent hand-over certi�cates

for the same chain. This is the server that needs to be ultimately held responsible.

4.4.4 Key Revocation

As with any certi�cate-based system, there must be a way for any user O to revoke her

hash chain.3 If the currently secret portion of O's hash chain (say Ki
O, for i = p�1; p�

2; : : : 1) has been compromised, O will detect this when she attempts to construct an

NRO the next time for the token veri�cation key Kp
O: S will return an error indicating

the current token veri�cation key Kq
O(q < p) from S's point of view. O can attempt to

limit the damage by doing one of the following:

1. invalidate all remaining token veri�cation keys Ki
O (i = q; q � 1; : : : 1) by

requesting NRO tokens for them, or

2. notifying S to invalidate the remaining hash chain by sending it a non-repudiable

request to that e�ect and receiving a non-repudiable statement from S stating that

3Revocation by authorities is not an issue in this system because the user has to interact with the
signature server for the generation of every new NR token anyway.
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the hash chain has been invalidated. This can be implemented similar to the in-

validation tokens described in Section 4.4.2 | except in this case the token would

invalidate the entire chain and not just a single key.

4.4.5 General Signature Translation

In a more general light, the signature server in S3 can be viewed as a \translator" of

signatures: it translates one-time signatures based on hash-functions into traditional

digital signatures. The same approach can be used to combine other techniques such that

the result provides some features that are not available from the constituent techniques

by themselves.

For example, one could select a traditional digital signature scheme (say D1) where

signing is easier than veri�cation (e.g., DSS) and one (say D2) where veri�cation is easier

than signing (e.g., RSA with a low public exponent) and construct a similar composite

signature scheme. The signing key of an entity X in digital signature scheme D is denoted

by SDX . To sign a message m, an originator O would compute SigD1

O (m) and pass it along

with m to the signature server S. If S can verify the signature, it will translate it to

SigD2

S (m;SigD1

O (m)) In other words, the composite scheme allows digital signatures where

both signing and veri�cation are computationally inexpensive.

4.5 Applications

4.5.1 Building a Secure Time Stamping Service

In Section 4.2.4, we saw that S3 meets the standard requirements of a signature scheme.

The structure of the non-repudiation tokens results in an additional property: non-

repudiation tokens issued by a given user have a strict temporal ordering among them.

Recall the structure of the non-repudiation tokens described in Section 4.4.1:

NROi = (SigS(OjmijijK
i
OjH

i);Ki�1
O )

where; Hn = Kn
O; Hi�1 = f(Hi;NROi)

If f() is collision-resistant, the chaining factor Hi imposes an order among the messages

signed. Let us call this a token chain. Suppose that

fNROig; i = n : : : p; p� 1 : : : q



4.5. APPLICATIONS 79

indicates the token chain of NRO tokens issued by a certain user O at a given time. It

is easy to see that all NROq; q < p, must have been created after NROp. As NROp is

a commitment on mp, it follows that O knew mp and showed it to S before NROq was

created. O and S, either by themselves or in collusion, cannot create NROp after NROq

was created. This enables us to build a time stamping service based on S3.

Ideally, a time stamping system must be able to impose a total order on all the

messages time stamped. We can adapt the approach used in [HS91], where S generates

a chaining factor from a single, global chain. Every signature generated by S has a

chaining factor from this global chain. To verify a given time stamp, one needs to know

the owners of the previous (and if necessary the subsequent) time stamps generated by

the time stamping server.

In Section 4.3, we discussed a protocol that results in a combined NRO/NRR token.

Chaining factors can be included in this token as well. The resulting NR token will be

NRij
AB = SigS(AjBjNRX:mijjijjjK

i
AjK

j
B jH

i
AjH

j
B);K

i�1
A ;Kj�1

B ; where

Hn
A = Kn

A; Hi�1
A = f(Hi

A;NRO
i
A);

Hm
B = Km

B ; Hj�1

B = f(Hj
B;NRO

j
B):

and NRij
AB is the same as NROi

A and NROj
B . Each time A sends a message to B using

the modi�ed protocol resulting in a combined NRX token, the token chains of A and B

are \synchronised:" any NROp
A; p > i must have been created before any NROq

B ; q < j.

Thus, when A's and B's chains are synchronised, they become witnesses to each others

non-repudiation tokens made before the synchronisation point. This temporal linking

of chains is transitive: if B's chain is later synchronised with C's chain, C indirectly

becomes a witness to the earlier synchronisation between A and B. Although this does

not necessarily result in a total order, the more chains are synchronised after a message

has been signed, the greater the number of witnesses to the time of signing.

Thus, S3 can be used to temporally link the tokens generated by S on behalf of

multiple users. A practical implementation of a time stamping service can be constructed

by requiring that S include a time stamp in each signature generated. The aim of this

construction is not to provide an absolute guarantee that the time stamp in a document is

precisely correct. Instead, the temporal ordering property of S3 signatures is used to verify

if the time stamp is plausible. In case of a dispute about the time stamp on a signature

by A, the token chains of all parties synchronised to A's chain after the signature was
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made are examined (suppose there are n such parties). If these token chains satisfy all

the temporal ordering relationships discussed above and if there is a su�cient number of

honest parties among those linked to A's token chain, then the time stamp is correct. In

this scenario, all of the n+2 parties involved (the recipient, S, and n witnesses) involved

must collude in order to produce a fake time stamp which cannot be proved to be a fake.

When digital signatures are used as a means to provide accountability, it is crucial

to have unforgeable time stamps embedded in the signatures. The usual technique to

achieve this is to use a separate, external time stamping service in conjunction with a

traditional digital signature mechanism. The structure of S3 makes it a signature scheme

with an integrated unforgeable time stamping facility.

4.5.2 Applications with a Fixed Recipient

As the role of the signature server is veri�able, the recipient can also play that role.

This is useful in applications where several non-repudiable messages need to be sent to

the same �xed recipient. An example of this is a \home-banking" (or electronic funds

transfer) application, where customers send signed payment orders to their bank.

Payment messages are of the form m = (payee; amount; date):When a payer wants

to make a payment, he constructs a message of the above form and executes the normal

S3 protocol with the bank, resulting in an NRO token for the message. The bank then

transfers amount to the account of payee and issues a special NRR token, which can be

its signature on the entire NRO token. Optionally, it may also get an S3 NRR token from

the payee and forward it to the payer. The non-repudiation tokens serve as evidence of

the transaction.

The idea of using a hash chain for repeated, �xed-value payments was suggested

recently [Ped96, HSW96]. We have been able to use S3 for payments of arbitrary values

because S3 provides non-repudiation of origin for arbitrary messages.

4.6 Analysis

Computation: Ordinary users of S3 need to be able to compute one-way hashes and

to verify traditional digital signatures. Only the signature servers and CAs are required

to generate traditional digital signatures. Key generation for ordinary users is also rela-

tively simple: the user needs to be able to generate a random number. In contrast, key

generation in traditional digital signature systems is typically more complex, involving,
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for example, the generation of large prime numbers. In summary, the computational

requirements for ordinary users of S3 are less than those of a traditional digital signature

scheme o�ering comparable security.

Storage: Using the improvement described in Section 4.4.1, users need to store only

the last signature received from S, the secret key, the sequence number of the current

token public key, and the veri�cation keys needed to verify certi�cates.

Signature servers need to store all generated signatures in order to provide them to

the users on demand. The stored signatures are necessary only in case of a dispute.

Therefore, they can be periodically down-loaded to a secure archive.

Communication: The communication overhead of S3 is comparable to that of stan-

dard symmetric non-repudiation techniques because a third party is involved in each

generation of a non-repudiation token.

In non-repudiation techniques based on traditional digital signature schemes, the in-

volvement of third parties can be restricted to exception handling, whereas token gener-

ation is usually non-interactive. The price to be paid for this gain in e�ciency is that

revocation of signing keys becomes more complicated. In S3, revoking a key is trivial: O

simply has to invalidate the current chain.

Security: In the preceding sections, I demonstrated that as long as the registration

procedure, the digital signature scheme, and the one-way hash function are secure, both

users and signature servers are secure with respect to their individual objectives. Fur-

thermore, the security of originators depends on the strength of the hash function and

not on the security of the digital signature scheme.

Note that in practice, traditional digital signature algorithms are not applied directly

to arbitrarily long messages. Instead, a collision-resistant, one-way hash function is �rst

applied to the message to produce a �xed-length digest or �ngerprint which is then signed

using the signature algorithm. Thus, even in traditional digital signature schemes, the

overall security therefore depends on both the signature algorithm and the hash function.

Signature servers typically have signi�cantly more computational resources available to

them than do ordinary users. For a given digital signature scheme, signature servers can

a�ord to choose a higher grade of security (e.g., longer signature keys) than can ordinary

users. The primary advantage of S3 is that it gives ordinary users the ability to produce

stronger signatures than they could have been able to by using traditional signatures by

themselves in the standard way.
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4.7 Related Work

Although non-repudiation of origin and receipt are among the most important security

services, only a few basic protocols exist. See [For94] for a summary of the standard con-

structions. The e�ciency problem as addressed by speci�c designs of signature schemes

was mainly motivated by the limited computing power of smart cards and smart tokens.

Schneier [Sch96] lists most known proposals. Typically they are based on pre-processing,

or on some asymmetry in the complexity of signature generation and veri�cation (i.e.,

either sender or recipient must be able to perform complex operations, but not both).

Note that although S3 uses a signature scheme that is asymmetric with respect to signa-

ture generation and veri�cation, ordinary users are never required to generate signatures;

thus, both the sender and the recipient are assumed to be computationally weak.

In his well-known paper [Lam81], Lamport proposed using hash chains for password

authentication over insecure networks. There had been other, earlier proposals to use one-

way hash functions to construct signatures. Merkle has presented an overview of these

e�orts [Mer87]. The original proposals in this category were impractical: a proposal by

Lamport and Di�e requires a \public key" (i.e., an object that must be bound to the

signer beforehand) and two hash operations to sign each bit. Using an improvement

attributed to Winternitz involving a single public key (which is the nth hash image of

the private key) and n hash operations, one can sign a single message of size log2n bits.

Merkle introduced the notion of a tree structure [Mer87]; in one version of his proposals,

with just a single public key, it is possible to sign an arbitrary number of messages.

Nevertheless, it requires either a large number of hash operations or a large amount of

storage in order to sign more than a handful of messages corresponding to the same public

key.

Motivated by completely di�erent factors, P�tzmann et al [PPW91][P�96, Section

6.3.3] proposed a fail-stop signature protocol which uses the same ideas as S3. There, the

signature server is also the recipient of the signature (which is a sub-case in the scope

of S3), and the goal is to achieve unconditional security for the signer against the server

(in the sense of fail-stop signatures). The protocol has a similar structure to the one in

Section 4.2. Because of the speci�c security requirements, all parties have to perform

complex cryptographic operations, and signatures are not easily transferable.
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4.8 Summary and Conclusions

Non-repudiation techniques are important in providing accountability and legal signi�-

cance to commercial transactions. In this chapter, I have presented a new and e�cient

non-repudiation technique. It has several useful properties. It allows ordinary users

to make use of the superior resources of large servers to generate stronger signatures,

while keeping the servers veri�able. The structure of the non-repudiation tokens makes

it easy to provide secure time-stamping with little additional e�ort. Key revocation by

authorities is instantaneous. The basic scheme can be modi�ed to support user mobility.

How can S3 signatures be used in fair exchange? In contract signing, the usage is

straight-forward with the version of S3 described in Section 4.4.2.

Consider the protocol in Figure 2.2. If the signature server S is trusted by the signer

O, then me1 can simply be SigS(OjmjijK
i
OjK̂

j
O), where m is (VO; VR; text ;K

i
O), and me3

is Ki�1
O . To abort the exchange, O releases K̂j�1

O to S and obtains a revocation token,

which it forwards to T in protocol abort. However, if S is not trusted by O, this is not

acceptable because S can collude with R and convince T to issue a replacement token. In

this case, O could use a special type of S3 chain where only even numbered token public

keys are valid for usual signatures. Odd numbered token public keys are used in message

me1 of the exchange. In other words, O obtains two signatures from S for two successive

token public keys Ki+1
O and Ki

O. It releases the �rst candidate non-repudiation token

along with Ki
O in me1 and K

i�1
O in me3.

The pre-images are forwardable strings. So, S3 signatures can also be used in the

fair exchange protocol for forwardable items. There does not seem to be a way to use

veri�able encryption with S3 signatures, as long as ordinary one-way hash functions are

used.

The purpose of collecting non-repudiation tokens during a protocol run is to be able

to support claims during subsequent disputes about what happened during the protocol

run. Whether the non-repudiation tokens are su�cient to win a dispute depends on

the framework within which disputes would be conducted. Such a dispute handling

framework has legal, policy, and technical aspects to it. Without a clear picture of how

eventual disputes are going to be conducted, there is no guarantee that the collected

non-repudiation tokens are of any use. A comprehensive framework for handling disputes

in electronic commerce will evolve over time. In Chapter 6, I will discuss one aspect of

the technical infrastructure for handling disputes in electronic payment systems. To set

the stage for this discussion, in Chapter 5, I will present the design of a generic payment

service.
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5.1 Introduction

An important aspect of many commercial transactions is payment. A payment is the

transfer of monetary value from one player to another. In the example scenario from

Section 1.2, the initial reservation request is followed by Alice making a payment for the

ticket. Ever since money was invented as an abstract way of representing value, systems

for making payments have been in place. In the course of time, new and increasingly

abstract representations of value were introduced. A corresponding progression of value

transfer systems, starting from barter, through bank notes, payment orders, cheques,

and later credit-cards, has �nally culminated in electronic payment systems. Mapping

between these abstract payments and the transfer of \real value" is still guaranteed by

banks through the �nancial clearing systems. Several electronic payment systems have

been proposed and implemented in the past few years [AJSW97]. The many di�erent

payment systems are incompatible with each other. Each individual player will have

the ability to use only a subset of these payment systems. When Alice wants to make a

payment to BobAir, they must �rst identify what payment systems they have in common,

and then pick a suitable one from among them for the payment.

In the example from Section 1.2, Alice and BobAir used a standard on-line ticket

purchase application for the reservation and sale of the airline ticket. We will use the

term business application to refer to such a generic application which implements a certain

business process. Ideally, the business application should be able to make use of any of

the several common means of payment available to Alice and BobAir. Currently, the

developer of such a business application has to worry about:

� making sure that the application knows how to use all the various di�erent payment

systems its users are likely to have available, and

� in case multiple payment instruments are available, providing a way to choose one

of them.

A unifying framework enabling business applications to use di�erent payment systems in

a transparent manner will greatly ease the task of business application developers. In the

rest of this chapter, I describe the design and implementation of such a framework called

the generic payment service. The primary component of this generic service is a coherent

hierarchy of application programming interfaces (APIs) for the transfer of monetary value.

The ow of information during transactions leads to a classi�cation of actual payment
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systems into a set of payment models. The API hierarchy reects this separation into

di�erent payment models: it consists of a base API common to all payment models and

extensions speci�c to each model. In addition to the uni�ed interfaces, the generic service

also provides mechanisms for automatic selection of the speci�c payment instrument to

be used in a transaction; this will enable the business applications to be concerned just

with the questions \how much to pay?" and \to whom?" but not with \what payment

instrument to use?" More interestingly, these applications can specify requirements on

payment instruments to be used for the requested transaction | for example, in terms

of the security services supported by an instrument. In other words, instead of saying

\pay using ABC brand credit-card," the application can say \pay using an instrument

that provides payer anonymity and non-repudiation of receipt."

Thus, the design of a generic payment service is an interesting and useful e�ort in its

own right. But it also helps in the task of developing a framework for handling disputes

in electronic commerce. In our example, there are several points about which disputes

can arise. There may be disputes about the reservation itself, as already mentioned in

Section 1.2; there may be disputes about the subsequent payment by Alice; there may

be disputes about the delivery. Developing a complete framework for handling all types

of disputes is a complex task. It has legal, policy, and technical aspects to it. In order

to keep the problem tractable, I will limit myself to discussing the technical aspects of

payment disputes only. In Chapter 6, I discuss the issue of handling disputes in electronic

payment systems. But before discussing the types of disputes that can arise in electronic

payment systems and how they can be handled, we need to have a de�nition of the service

provided by such systems. The generic payment service therefore is a pre-requisite to the

discussion on handling disputes.

This chapter is organised as follows. In Section 5.2, a simple classi�cation of various

models of electronic payment systems is presented. The design of a generic payment

service, based on this classi�cation, is presented in Section 5.3. Section 5.4 describes

how a new payment system can be plugged into the generic payment service. Section 5.5

describes how the a business application can use the generic payment service. A di�erent,

more general design approach is presented in Section 5.6, and its advantages are discussed.
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5.2 Models of Electronic Payment Systems

There are several di�erent electronic payment systems. All of them have the same basic

purpose of facilitating the transfer of value among di�erent parties. They di�er in various

aspects such as the point at which an electronic transaction is linked to the movement of

real monetary value in the �nancial clearing system, and the degree of security provided by

the system [AJSW97]. In this section, I present an intuitive model of electronic payment

systems as a �rst step in the design of the generic payment service.

5.2.1 Players

Electronic payments involve a payer and a payee. The intent of the payment is to transfer

monetary value from the payer to the payee. This is accomplished by a payment protocol.

The process also requires at least one �nancial institution which links the data exchanged

in the payment protocol to transfers of monetary value. The �nancial institution may be

a bank which deals with monetary value represented in terms of real money; or it may

be some organisation that issues and controls other forms of representation (e.g., loyalty

points). Here, I use the term \bank" to mean all di�erent types of �nancial institutions

and the term \real money" to cover all forms of non-digital value representations used

by �nancial institutions. Typically, banks participate in payment protocols in two roles:

as issuers (interacting with payers) and as acquirers (interacting with payees). Finally,

an arbiter may be involved in resolving disputes in the payment system.

The basic set of players involved in a payment system is illustrated in Figure 5.1. In

most systems, the presence of the arbiter is not explicit: even if the necessary proofs of

evidence are produced, dispute handling is done outside the payment protocol and often

not even speci�ed. Sometimes, it is not even possible to de�ne dispute handling at the

protocol level since the resolution of disputes may be subject to policy decisions of the

users and �nancial institutions (a full-edged payment system built on top of a given

payment protocol should however provide appropriate dispute management services).

Certain payment systems might involve more players, e.g., registration and certi�ca-

tion authorities, or other trusted third parties that provide anonymity [LMP94, Cha81]

or enforce receipts for payments (for example, using a fair exchange protocol).
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Issuer

Transfer of "real" value

Acquirer

Payer Payee

Arbiter

Figure 5.1: Players of a Payment System

5.2.2 Payment Models

We can classify payment systems according to the ows of information between players.

Figure 5.2 lists, without claiming completeness, the four most common payment models

and their information ows.

One criterion for distinction is whether the communication between the payer and the

payee is direct or indirect. In the latter case, the payment operation is initiated by one

player and involves only the initiator and the bank(s). The other player is noti�ed by its

bank at the completion of the transaction. An example of direct payment is paying by

cash or cheque. An example of indirect payment is paying by means of a standing order

or wire transfer. Most currently proposed Internet payment systems implement direct

payments. Consequently, I will focus only on these systems.

A second criterion is the the relationship between the time the payment initiator

considers the payment as �nished, and the time the value is actually taken from the

payer. There are three possibilities, identi�ed by the names \pay-before," \pay-now,"

and \pay-later" payment systems. In pay-before payment systems, real value is removed

from the payer ahead of time. This implies that some sort of electronic value token is

issued to the payer at this time. These tokens are used during the electronic payment

transaction. Since this is similar to cash in the physical world, I will use the term cash-like

to describe the class of payment systems of this model.

Pay-now and pay-later payment systems are quite similar: in both cases, the user
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must have some sort of an \account" with the bank and a payment is always done by

sending some sort of \form" from payer to payee (cheque, credit card slip, etc.). Thus,

we can treat these two cases as instances of the same model. I will use the term cheque-

like1 to describe the class of payment systems of this model. Similar informal models of

payment systems have been used by various others [BP89, NM95, Mas96].

A large number of proposed or existing payment systems can be grouped into these

two categories. Examples of cash-like payment system include ecash,2 NetCash [MN93],

CAFE [BBC+94] and Mondex.3 Examples of cheque-like systems include credit card

protocols like SET [MV97], iKP [BGH+95], CyberCash [EBCY95] and electronic cheque

schemes like FSTC [FST95].

The process of de�ning a generic payment service goes hand in hand with the devel-

opment of a formal de�nition of a secure payment system and the properties it should

possess. Such a formal de�nition will be a useful framework for veri�cation and compar-

ison of security properties of payment systems.

5.3 Design of the Generic Payment Service

5.3.1 Scope and Terminology

The main functionality of any payment system is to provide value transfer services

consisting of moving electronic value from a payer to a payee, moving it back from the

payee to the payer in case of a payment reversal, and converting \real money" into

electronic value (\loading") or vice versa (\deposit"). The players may specify certain

security attributes for this value transfer.

In the simplest case, the transfer of value happens between two end points. Such an

end point is called a purse.4 A purse corresponds to a single instance of a speci�c payment

system and contains all the user information related to that instance. For example, a user

who has a credit card account, an instance of a stored-value card and an ecash account will

1In the prototype implementation, I used the term \account-based." It was somewhat confusing
because certain practical implementations of cash-like payment systems, such as DigiCash's ecash also
have a notion of an \account" in the bank. Thus, in the interests of avoiding confusion, I use the term
\cheque-like" here.

2See http://www.digicash.com/ for more information.

3See http://www.mondex.com/ for more information.

4Sometimes, a di�erent term { pocket { is used to denote the same concept.
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have three separate purses, one associated with each of the above. Purse management

services allow a user to set-up, con�gure, manage, and delete purses.

Each value transfer in progress is embodied in a separate transaction. A purse may be

involved in several concurrent transactions. Transaction management services allow

transactions to be queried for their status, cancelled, or recovered from a crash. Before

beginning a transaction, each player must choose a suitable purse. This selection may have

two parts: a local decision based on preferences and requirements and a mutual decision

based on negotiations. The services that enable this decision making are collectively

known as purse selection services.

In addition to purses and transactions, a separate entity called the payment manager

manages the overall operation of the generic payment service. Each player will have one

active payment manager managing its purses and transactions. Information services

enable the retrieval of information on the state of the payment manager, or a speci�c

purse: for example, a list of previous transactions or statistics on all payments received

and made in a certain period of time.

Finally, dispute management services allow the user to make claims about (al-

leged) past transactions as well as prove or disprove them to an arbiter. None of the

payment systems introduced so far has integrated dispute handling features. Most limit

themselves to the collection of evidence alone. In Chapter 6, I discuss dispute handling

in greater detail.

Figure 5.3 shows the entities in the generic payment service and the services they

provide. When a business application wants to make a value transfer, it �rst identi�es

a suitable purse, using purse selection services. It then asks the selected purse to create

a new transaction. Transactions are treated as transient entities. Each transaction is

associated with a longer-lived transaction record where all relevant information about

the transaction is maintained. Some of the services are distributed over more than one

entity (e.g., information services are provided jointly by the payment manager, purses,

and transaction records).

5.3.2 Design Overview

To de�ne each of the above services more concretely, I have adopted the following ap-

proach. For a given class of services (e.g., value transfer services):

1. First, identify the primitives for this service that are common to most payment

systems. Describe these in the form of a base service interface. For example, the
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Figure 5.3: Generic Payment Service in Action (Entities in a Typical Instance)
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ValueTransferServices5 interface contains primitives like pay().

2. Then for each payment model, identify any additional primitives, not already cov-

ered in the base interface but common to all payment systems of that model. De-

scribe these in the form of a sub-interface. For example, the sub-interface CashLike-

ValueTransferServices for the cash-like model de�nes primitives like withdraw(), that

are relevant only in the cash-like model.

Some services, such as purse selection, are provided by the generic payment service it-

self. Other services, such as value transfer, are provided by the various payment systems.

To incorporate a speci�c payment system into the generic payment service, a system-

speci�c adapter must be built. The adapter uses the services provided by the payment

system to implement services de�ned in the generic payment service interface. To intro-

duce a new model, a new (possibly empty) sub-interface will have to be de�ned for each

service interface. In the next section, I will describe the services interfaces in detail.

The high-level design described so far can be implemented in a variety of ways. I

opted for an object-oriented approach. I describe the entities and services required in the

generic payment service in terms of base classes and interfaces. The four main types of

entities identi�ed in the previous section (purses, transactions, transaction records, and

the payment manager) are described by four di�erent classes. Each service interface cor-

responds to an interface or abstract class. Concrete implementations for the services that

are independent of payment systems (such as services for purse selection) are provided

by the payment manager or related classes. Adapters for speci�c payment systems can

then provide implementations for the remaining interface and abstract class methods.

For example, the Transaction class in an adapter is expected to implement the services

de�ned in the ValueTransferServices interface as well as the TransactionServices interface.

The ValueTransferServices interface has model-speci�c extensions. The adapter for a given

payment system should implement the branch of the ValueTransferServices interface cor-

responding to the model of that payment system. Figure 5.4 illustrates the classes that

constitute an adapter and the services they implement.

The users of the generic payment service (such as Alice's and BobAir's generic on-line

purchase application) can treat the various objects (such as purses and transactions) as

instantiations of the generic base classes. In the following sections, I describe the services

5In the prototype implementation, this hierarchy was named PurseServices. Here I opt for a more
intuitive name.
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Figure 5.4: Generic Payment Service (Classes and Interfaces)
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of the generic payment service and the objects that provide them (shown in Figure 5.3)

in more detail.

5.3.3 Services

The primitives of the value transfer services interface are described briey in Table 5.1.

The complete set of primitives in the generic payment service API appears in Appendix A.

Square parentheses ([ ]) indicate optional parameters. Exceptions and errors are not

shown. Concrete Java bindings of the service descriptions can be found in [SEM96]. Note

that each transaction object knows its transaction record object, which in turn knows the

purse object which created them.

Primitive Input Output Description

implemented byTransaction

pay payee, amount,
options, ref.a

send a payment

receivePayment [payer,] [amount,]
options, ref.

payer, amount receive a payment

reversePayment transaction record ask/get a refund

reverseReceivedPayment transaction record make a refund

Additions for cash-like model

withdraw amount, options, ref. load money into purse

deposit amount, options, ref. unload money from
purse

Additions for cheque-like model

receiveRawPayment [payer,] [amount,]
options, ref.

payer, amount receive a payment (de-
fer authorisation)

authorise authorise a previous
raw payment

capture [amount ] capture a previous raw
payment

multiCapture list of transaction
records

capture a set of previ-
ous raw payments

Table 5.1: Generic Payment Service: Value Transfer Services

aref. allows this payment to be tightly linked to its context, e.g., an order and its description

5.3.4 Purses

A purse is an abstraction of an instance of a payment system that is available to the user.

It is necessary to have services
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� for creating a purse (i.e., a constructor to instantiate a purse object),

� for con�guration and set-up, which will be used by purse management applications

(e.g., to associate a purse with a credit card and to register with a Certi�cation

Authority),

� for initialisation, which are invoked during start-up to activate the purse,

� for creating transactions (see Section 5.3.5), and

� for information (e.g., answers to questions like \does this purse provide non-

repudiable receipts for payments?").

These services are part of the purse management, purse information, and transaction

services, and are implemented by the Purse class hierarchy. The base Purse class de�nes

the aforementioned services and provides default implementations for some of them. For

each payment model, the base Purse class is extended to a model-speci�c sub-class (e.g.,

ChequeLikePurse class). Adapter-writers are required to extend a model-speci�c Purse

class and override/extend default implementations as necessary. For example, to adapt

the SET payment system (a protocol for making credit-card transactions over the Inter-

net; SET Secure Electronic Transactions [MV97]), one can de�ne a class SETPurse which

extends ChequeLikePurse.

Additionally, the Purse class hierarchy also provides services for information manage-

ment corresponding to these purses (e.g., answers to questions like \what is the user name

associated with this purse?" or, where applicable, \what amount is associated with this

purse?").

A further classi�cation of purses can be made based on the subset of operations

supported by the purse

� pay-only purse for a purse that can be used to make but not to receive payments,

� receive-only6 purse for a purse that can be used to receive but not to make pay-

ments, and

� pay-and-receive purse or just purse for a purse that can be used for making and

receiving payments.

6Sometimes the term till is used to denote a receive-only purse.
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Note that most current payment systems do not support pay-and-receive purses.

Ecash and Mondex are examples of payment systems that do support pay-and-receive

purses.

5.3.5 Transactions and Transaction Records

As mentioned, the base ValueTransferServices interface de�nes value transfer services that

are common to all payment models. Some example services de�ned in this interface are:

pay() makes a payment from a purse to a designated recipient, receivePayment() is the

counterpart of pay(); it receives an incoming payment. Model-speci�c sub-interfaces may

de�ne additional services. For example, the sub-interface for the cash-like model has a

service to withdraw money from the bank into the purse.

Every instance of a value transfer service is abstracted by a transaction. The Pay-

mentTransaction class implements the value transfer services described in one branch of

the ValueTransferServices interface hierarchy. Information associated with a transaction

(both transient information such as state that is relevant only while the transaction is

active and permanent information such as receipts or other evidence that is relevant long

after the transaction is completed) is kept in a related PaymentTransactionRecord object.

This can be used in crash recovery and dispute management as well as for informational

purposes.

The base PaymentTransaction de�nes general transaction services such as trying to

abort an on-going transaction or retrieving its current status. Each sub-class of the base

class implements a leaf interface of the ValueTransferServices interface hierarchy (e.g.,

SETTransaction extends PaymentTransaction and implements the ChequeLikeValueTrans-

ferServices interface). Each leaf Purse class provides a startTransaction() method which

creates a new transaction of the appropriate type (e.g., in the SETPurse class, the start-

Transaction() method will instantiate a SETTransaction object).

5.3.6 Payment Manager

The payment manager provides services for purse selection as well as to retrieve man-

agement information. It keeps track of the currently available purses, known payment

module adapters, etc. To maintain and manage this information, the payment manager

provides various services such as creation and registration of a purse, deletion of a purse,

registration of a new adapter. Additional services are provided to make this information
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available to other objects and applications in a variety of useful ways. The manager is

also responsible for initialising all the relevant components on start-up.

Selection of a purse to be used in a transaction is based on several factors: require-

ments for the transaction (e.g., security requirements), static user preferences, negotia-

tion with a peer payment manager, and manual selection by user. Except negotiation,

the remaining factors are all local. The payment manager provides various services to

facilitate this local selection.

Negotiation with the peer for selection of the payment instrument can be done in

several ways. But all negotiation protocols consist of simple request-response exchanges.

Currently, negotiation is restricted to tuples containing two parameters.

� Payment System Name: \payment system name" is de�ned as follows: two purses

that report the same payment system name can potentially engage in a payment

transaction between themselves. Typically, the payment system name corresponds

to a single <protocol, brandname> pair; e.g., SET:MasterCard and SET:Visa will

be two di�erent payment systems. It is up to the adapter to determine the payment

system name associated with a purse as long as it satis�es the de�nition above, and

� Amount (value and currency).

I have designed and implemented a simple negotiation protocol which can support

various negotiation policies. Two example methods, selectPayingPurse() and selectRe-

ceivingPurse() implementing a default policy, are provided: the payer is the initiator of

negotiation, the payee is allowed to adjust the amounts in its reply (e.g., the merchant

may add a surcharge for using a credit-card or give a discount for using ecash). It is also

possible to enforce other negotiation policies.

5.4 Adapting a Payment System

In order to incorporate a new payment system into the generic payment service, a suitable

adapter has to be designed (Figure 5.4 indicates what constitutes an adapter). The

following steps are required in this process:

� Identify the model to which the payment system belongs (e.g., SET belongs to the

cheque-like model),
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� Implement a sub-class of the Purse class corresponding to the payment model iden-

ti�ed (e.g., SETPurse extends ChequeLikePurse). This implies providing implemen-

tations for all abstract services de�ned in the ancestor Purse classes (e.g., Purse and

ChequeLikePurse) and overriding default implementations therein, where necessary.

In particular, the new class must provide a proper implementation of the setup()

method: this method should allow the user to carry out all con�guration necessary

for the payment system,

� Implement a sub-class of PaymentTransaction class which implements the value

transfer services de�ned in the leaf of the ValueTransferServices interface hierarchy

corresponding to the payment model identi�ed (e.g., SETTransaction implements

ChequeLikeValueTransferServices and inherits from PaymentTransaction).

In addition, if any special action needs to be taken during the installation of the adapter,

a suitable installation hook must be provided. A standard installation application is

available as part of SEMPER. It performs two actions: installing the contents of the

adapter module in the correct locations, and registering the name of the new purse class

with the payment manager. If there are any adapter-speci�c installation procedures, they

must be implemented in the form of an installation hook de�ned in the ModuleInstallHook

interface.

5.5 Using the Generic Payment Service

Once a user has installed one or more payment instruments along with their adapters on

her system, two types of usage are possible: making payment transactions from business

applications, and using special purpose applications which are meant to manage the the

con�guration and operation of the generic payment service.

5.5.1 Payment Transactions

The primary use of the generic payment service is via business applications making pay-

ment transactions.

A user will initiate payment transactions using some sort of a high-level business

application (e.g., a web-browser or a CD-catalogue reader). Figure 5.5 shows the object

interactions that take place at the payer end during an execution of a typical payment

transaction. The important things to note are:
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� the user need not specify the payment instrument to use if he does not want to;

the payment service can be con�gured to prompt him for selection of payment

instrument if it cannot do so by itself, and

� the application is not aware of the speci�c payment instrument being used; it deals

with a generic Purse and PaymentTransaction objects. It need not even know the

model to which the chosen purse belongs.

The sequence of events at the payee side is similar, with minor di�erences. The payee

application is probably an unattended merchant server. Thus, there will be no user inter-

action. There may be interactions with third parties during the transaction. For example,

in a cheque-like system, the payee's adapter may contact the acquirer for authorisation.

One can also imagine a payment system where the payer's adapter has to obtain some

sort of a credential from the issuer before each payment. All such communication with

third parties are carried out within the adapter | the calling applications are typically

unaware of them.

This example is also intended to give an idea about how the generic payment service

enables business application development. The primary services used by the business

applications are purse selection and value transfer between payer and payee. Both of

these are common to all payment systems. Thus, a large class of applications using the

generic payment service need not be aware of system- or model-speci�c details. Certain

special applications (see next section) will make use of the model-speci�c components of

the generic payment service.

5.5.2 Special Applications

The second category of usage is via special applications. The most important special

application is the purse management tool.

Purse Management

Before being able to use an installed payment instrument, a purse corresponding to it

must be created and con�gured. A special purse management application is provided for

this purpose. Changes to purses are written out to stable storage. Purse management is

an infrequent activity (typically, once a purse is created and con�gured, it can be used

in several subsequent payment transactions). Purse management makes use of a setup()

method provided by the Purse class in an adapter. This method must implement all the
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Payment Protocol

Figure 5.5: Interactions During a Payment (dotted lines indicate optional ows)
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necessary con�guration for that payment system. For example, the setup() method of the

SETPurse allows the user to enter the credit card information (cardholder name, brand,

number, expiry date) which are then stored as part of the purse state.

Other Applications

There can be a number of other special applications. Some of these are model-speci�c.

A batch capture application can be used by the merchant to capture a set of received

payments for cheque-like purses; typically this will be used as part of end-of-day pro-

cessing. A withdrawal application can be used to load money into cash-like purses. The

SEMPER prototype implementation comes with two model-independent special applica-

tions: a transaction browser allows the user to browse through accumulated transaction

records; a module installer allows a user to install a new payment instrument along with

its adapter.

5.6 Token-based Interface De�nition

In the original design, I assumed a synchronous model since the �rst version of the

SEMPER architecture did the same [SEM96]. However, I have de�ned a token-based

interface which can support an asynchronous model in a straight-forward manner. The

token-based interface is inspired by the GSS-API [Lin97] approach. It has two types of

methods:

� one \starter" method for each di�erent type of protocol; the starter method returns

a token containing the �rst message of the protocol, and

� a common \processor" method; this takes a token as input and depending on the

internal state of the protocol run, may return another token as output.

In the token-based model, the payment service does not engage in any direct commu-

nication with the peer. Instead, the caller is expected to take care of the communication.

The payment service is still responsible for maintaining the state of a protocol run. The

initiating caller invokes an appropriate starter method in the payment service API to

start a protocol. Typically, these starter methods will return a token as output. The

initiating caller application is expected to communicate this token to its peer entity, the

responding caller application. The latter in turn will invoke the processor method on its

instance of the payment service and give the received token as input. From this point
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Figure 5.6: Interactions During a Payment in the Token-based Model (Dotted lines indi-
cate optional ows)
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on, whenever a caller entity receives a token as output from the processor method, it will

send the token to its peer; whenever a caller entity receives a token from its peer, it will

invoke the processor method on its payment service giving the received token as input.

A token-based version of value transfer services is de�ned in an interface hierarchy

called TValueTransferServices parallel to the ValueTransferServices interface hierarchy. For

each method (e.g., pay()) in the latter, a corresponding starter method (e.g., startPay()) is

de�ned in the former. In addition, a common processor method processToken() is de�ned

in the TValueTransferServices interface. Figure 5.6 illustrates object interactions in the

same scenario depicted in Figure 5.5, but with a token-based interface for negotiation

and value transfer.

Since there is no peer-to-peer communication taking place inside the generic payment

service, the caller does not have to block on service invocations. The designer of the

calling application has the freedom to use an asynchronous implementation architecture.

More importantly, the token-based approach can allow an application to supplement

the level of security provided by a payment system by transporting the tokens via a

channel with particular security attributes. For example, even though payment protocol

messages in SET are encrypted, an eavesdropper may be able to determine and link

the identity of the payer and payee by watching the network addresses in the payment

messages. With a token-based interface, if the applications were able to establish an

untraceable communication channel between them, they can extend the untraceability to

SET payments as well.

In the current implementation, the interface TValueTransferServices is optionally im-

plemented by sub-classes of the PaymentTransaction class. Since the token-based version

is more general than the synchronous version, it deserves to be the default value transfer

services interface.

5.7 Related Work

U-PAI [KGMP+96] is being developed as part of the Stanford Digital Libraries project.7

Their focus is on providing a uni�ed interface to payment services. They do not address

negotiation for parameters before a payment transaction begins; nor do they explicitly

address issues like refunds. They also appear to assume a distributed object infrastructure

such as CORBA and do not have a very clear security and trust model.

7See http://www-diglib.stanford.edu for more information.
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The Joint Electronic Payments Initiative (JEPI) of the W3C Consortium fo-

cussed only on de�ning the protocol for the negotiation of various payment related pa-

rameters such as the payment system. The scope of my work roughly corresponds to the

scope of these two projects taken together.

In 1996, Sun announced their Java Electronic Commerce Framework (JECF).8

The framework is still in the process of being de�ned. Their emphasis is on the payer

side: payers will be able to down-load di�erent \payment cassettes" (a cassette roughly

corresponds to a payment instrument and its adapter in our terminology) and integrate

them into their JECF installation. They also propose a sophisticated general access-

control scheme which can be used in my design.

The E-CO System project had roughly the same scope [Bah96] as my work al-

though their main focus, until the project was discontinued, was on establishing APIs

and mechanisms for payment negotiation [BN96].

5.8 Summary and Conclusions

In this chapter, I have described the design and implementation of a generic payment

service, which includes the de�nition of a common application programming interface

for payment systems. The main advantages of the generic payment service framework

are generality, transparency and abstraction. It is general because any payment

system can be incorporated into the framework. The uni�ed service de�nition hides the

details of particular payment systems from business applications, allowing them to be

implemented independent of payment systems. Developers of these applications do not

have to know about details of particular payment systems. Finally, they can specify

abstract requirements on the payment instrument to be used for their value transfer

transactions.

Complete Java bindings of the payment service interfaces can be found in the web

page of the SEMPER deliverable D03 [SEM96]. A prototype of the generic payment

service with all the basic functionality has been implemented as part of the SEMPER

project and tested using a \dummy" payment system. This work served as a basis for

the design of IBM's Internet payment framework, SuperSET. Adapters for a variety of

other payment systems, including SET, ecash, a stored-value card system called Chipper,9

8See http://www.javasoft.com/commerce for more information.

9See http://www.chipper.com/ for more information.
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and an electronic cheque system called MANDATE, have been developed (or are under

development) by various partners in the SEMPER consortium.

In Chapter 6, I will describe a generic approach to handling disputes in payment

systems, based on the generic payment service.
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6.1 Introduction

6.1.1 Disputes in Electronic Commerce

In the previous chapters, we saw that support for handling disputes is necessary for two

reasons. First, electronic commerce transactions typically have legal signi�cance in the

real world. This means that even if a transaction is concluded successfully, there may be

subsequent disputes about what happened during the transaction (or whether in fact an

alleged transaction took place). Second, practical considerations may sometimes render

it desirable to settle for weak fairness: even if the system is not able to make the fairness

guarantee to a correctly behaving player during normal operation, it must arrange to

gather su�cient evidence so that the player can recover fairness by initiating a dispute.

\Standing order" payments is an example of such a system. The payer instructs his bank

to allow the payee to request periodic value transfers (e.g., for paying utility bills). While

the payer cannot prevent the payee from transferring more money than necessary (e.g.,

the amount of the monthly bill), he can prove the amount transferred by obtaining a

statement from the bank. Earlier, we saw other examples of systems with weak fairness

| e.g., in the fair exchange protocols in Chapter 2, or in the case of fairness with respect

to the signature server in the S3 signature scheme in Chapter 4.

Thus, the ability of an honest player to win any dispute about a past or current

transaction is often an important requirement. In a dispute, there is a set of (one or

more) players called initiators who start the dispute and another set of players called

responders who participate in it. A special player called the veri�er or arbiter makes the

�nal decision regarding disputes, according to some well-de�ned procedures which can be

veri�ed by anyone. The initiator(s) try to convince the veri�er of a claim. Initiators may

support their claims by producing evidence or engaging in some sort of a proof protocol.

Responders may attempt to disprove the claims. The veri�er analyses the claims made

and the evidence presented and makes a judgment as to whether a dispute claim is valid

or not.

6.1.2 Handling Disputes

Even those systems which have accountability as one of their major goals (signature

systems such as RSA [RSA78], payment systems such as SET [MV97], or integrated

electronic purchase systems such as NetBill [CTS95]), usually limit themselves to the

generation and collection of evidence. Analysis of these systems may include proofs which
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demonstrate that the collected evidence is enough to win any disputes. It is assumed that

such evidence can be used in some dispute resolution procedure external to the system.

Obviously, this is not practical if the system needs to make decisions based on the outcome

of disputes.

Evidence tokens are essentially part of the internal structure of the system. For

instance, a payment receipt in the form of a digital signature is outwardly just a string

of bits. The semantics to the evidence is added by the system itself. Outside the system

(that is, from the point of view of the user of a system), what is necessary is to know what

the evidence means, and how it can be used in disputes. The structure and raw contents

of the evidence itself are not relevant outside the system. Thus, a system should support

a dispute service just like it provides its primary service (e.g., payment service). The

dispute service should specify how to initiate and resolve disputes for the given primary

service.

It is unlikely that completely automated dispute resolution is always feasible, or even

desirable. But complete automation should not be our intent. Instead, the dispute

handling service should be used as a tool in human-driven dispute resolution. There

are several projects that attempt to investigate the legal aspects of human-assisted on-

line arbitration [Kat96]. The veri�er in the dispute handling service is perhaps an expert

witness who will use the dispute service to aid him in his testimony. It may not necessarily

be a legally competent authority. For example, it may be an entity like the Online Ombuds

Service [Kat96] which helps players to resolve their disputes. In this case, the veri�er does

not make the �nal decision. Instead, it presents an analysis of the evidence (in terms of

likely decisions, and the set of assumptions that support them) to a human judge. The

veri�er may even be one of the players themselves. For example, if a customer claims to

a merchant that he has already made a payment, the �rst step would be to try resolving

the dispute without using an external veri�er. In this case, the merchant may ask the

customer to prove his claim: they run the dispute resolution protocol with the merchant

playing the role of the veri�er. Even before complaining to the merchant, the payer may

have run the dispute resolution protocol playing the role of the veri�er himself so as to

con�rm that his claim is provable. Also, the same evidence may be interpreted di�erently

by di�erent veri�ers (depending on their policies, trust assumptions, and context).

The �rst step in developing a coherent approach to dispute handling is to �gure out

how to de�ne a dispute handling service given the description of some primary service.

To keep the problem tractable, we focus on handling disputes in payment systems. In
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Chapter 5, a generic payment service was developed, abstracting away details speci�c

to individual payment systems. Such a generic service de�nition enables the users (ei-

ther human users or applications acting on their behalf) to invoke services in a system-

independent fashion. The advantages of having a generic service de�nition are diminished

if the handling of disputes is system-speci�c. Therefore, our aim is to head towards the

development of a uni�ed framework, rather than focussing on a speci�c payment system.

Even though our focus is on payment systems, I will attempt to stay general as far as

possible so that the approach outlined here has the potential of being extended so that

it is applicable to other types of generic service de�nitions as well.

This chapter is organised as follows. In Section 6.2, the problem of how to express

dispute claims is studied. As we saw, dispute claims in a generic service must be generic as

well. I will use the generic payment service as an example to illustrate dispute claims. In

Section 6.3, the problem of how to map evidence tokens to dispute claims is investigated.

This mapping is system-speci�c and needs to be done internally in every system (see

Section B.0.1 for an illustration).

6.2 Expressing Dispute Claims

6.2.1 Model and Notation

We use the ISO-OSI approach of modelling a distributed system [Lin83] by de�ning the

service provided by it. The purpose of a system is to provide some capabilities to its

users. In a distributed system, users are typically not co-located. A user accesses a

system at a service access point. The interaction between a user and the system is

carried out by invoking service primitives at access points. A service primitive can

be either an input to the system or an output from the system. Each service primitive

may be associated with a set of service parameters. The service parameters represent

the information exchanged between the user and the system during a service primitive

invocation. The service of the distributed system is essentially a statement of the capa-

bilities provided by it. In concrete terms, the service is de�ned by the interface between

the users and the system as the complete set of service primitives.

The problem I address is as follows: given the description of a primary service, how

can we derive the description of a corresponding dispute service?
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6.2.2 What to dispute?

Consider a payment system which implements the services de�ned by a generic payment

service described in Chapter 5. Assume that the system has already been appropriately

initialised. The primary purpose of the generic payment service is the transfer of value

from payer to payee. The description of value transfer services is given in Table 5.1.

To make a value transfer, the payer tells the system who the payee is, what amount

is to be transferred, and certain other parameters. Consider the example in Section 1.2.

Alice (or the application that she uses for on-line ticket purchase), will tell the payment

system,

� pay $200 to BobAir (\#434: for ight 822 on Jan 19").

In the generic payment service, this is represented by the service primitive pay which

takes the following pieces of information as parameters: payee, amount, ref (the external

reference strings enables the payment transaction to be linked to an external context).

Figure 6.1 illustrates the interface events during a payment. The service primitives in-

volved, along with their parameters specify the characteristics of the value transfers.

paid()

Alice BobAir

received(Alice,$200,ref,..)

pay (BobAir,$200,ref,..) receive(ref)

payment protocol

Figure 6.1: An Example Payment Transaction

Before formally de�ning a language to express dispute claims, let us attempt to get

a feel for the kinds of claims that need to be expressed. What sorts of disputes, related
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to the above value transfer, does the payer (Alice) expect to be able to initiate and win?

For example, Alice may want to claim that

� she paid $200 to BobAir (if BobAir refused to send the tickets claiming no payment

was made), or

� her payment was made before Jan 12 (if BobAir refused to sell reduced fare tickets

claiming that Alice did not make the payment before the deadline, Jan 12).

Some disputes may be about negative claims: for example, BobAir may want to prove

that

� BobAir did not receive $200 from Alice.

In other words, dispute claims are statements about the characteristics of value trans-

fer. These characteristics are determined by the service parameters used, and additional

contextual information (such as the time of value transfer).

In addition to the payer and payee, a �nancial institution may be involved in creating

a digital representation of money or converting it back to real value. Thus the value

transfer may involve two or more sub-protocols involving di�erent pairs of players. For

example, in the cheque-like model, the payer sends a \form" (e.g., a cheque or a credit

card slip) to the payee using a payment protocol and the payee may use a deposit protocol

to claim the real value. This leads to two other types of dispute claims.

� Recall that BobAir made an o�er to Alice for a cheap ticket if she made the payment

before Jan 12. Alice goes through the steps of the payment protocol (e.g., sending a

credit-card slip). However, BobAir changes its mind after receiving the credit-card

slip | he does not \capture" Alice's payment. Alice cannot of course prove that the

value transfer took place. But if she has a signed acknowledgement from BobAir,

she can prove that the value transfer could have taken place without further help

from Alice, if BobAir had wanted.

� Suppose Alice pays $200 to BobAir using a debit card. Later, she �nds an entry

in her monthly statement indicating a debit of $300. Alice may now want to start

a dispute with the bank claiming that she approved a debit of only $200. In other

words, a single original transaction could lead to two di�erent types of disputes:

one involving the payer and the payee and the other involving the payer and the

bank.



6.2. EXPRESSING DISPUTE CLAIMS 115

6.2.3 Value Transfers as Primitive Transactions

Users expect a system to provide a certain service. Therefore, disputes in the system

are about an instance of the service that was or could be provided. The primary service

provided by the generic payment service is value transfer from one player to another. The

model in Chapter 5 assumes four types of players involved in value transfer: the payer,

the payee, the issuer, and the acquirer. Value transfers between the issuer and acquirer

are carried out over traditional banking systems; this transfer is outside the scope of the

generic payment service. Thus, for the purpose of our disputes, we will consider the issuer

and acquirer as a single entity, called the bank. This leads to three types of value transfer

as shown in Figure 6.2.

Transfer of "real" value

Payer Payee

Bank

value subtraction

payment

value claim

Figure 6.2: Value Transfer Transactions

� In value subtraction, a user allows the bank to remove \real value" from the user; this

implies the user's right to spend \electronic value." In cash-like payment systems,

this corresponds to the withdrawal of coins. In cheque-like payment systems, this

is implicit in the payment itself. The players involved in a value subtraction are a

bank and a user.

� In value claim, a user requests that the bank gives \real value" to the user. In cash-

like payment systems, this corresponds to the depositing of coins. In cheque-like

payment systems this is either part of the payment or corresponds to the separate

capture transaction. The players involved in a value claim are a bank and a user.
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Primitive (See Table 5.1) Types of Value Transfer

cheque-like model a

pay payment, value subtraction
receivePayment payment, value claim
reversePayment payment, value subtraction
reverseReceivedPayment payment, value claim
receiveRawPayment

capture, multiCapture value claim

cash-like model

pay payment
receivePayment payment, value claim
reversePayment payment
reverseReceivedPayment payment, value claim
withdraw value subtraction
deposit value claim

aauthorise is not treated here since it does not involve a value transfer. But if the authorisation process
involves non-repudiable evidence (e.g., guarantee from the bank to hold an amount for a certain time), it
may be relevant in disputes. It would correspond to the feasibility of a value transfer.

Table 6.1: Types of Value Transfer

� In payment, the payer transfers value to the payee. The players involved in a

payment are the payer and the payee.

This is the approach taken in [PW96]. The relationship between the service primitives

of Table 5.1, and the types of value transfer identi�ed here is shown in Table 6.1. We

will not refer to speci�c protocols or service primitives in order to express dispute claims.

Instead, we will state the claims in terms of whether an intended service did or could take

place. For this purpose, we introduce the notion of a primitive transaction. Each instance

of a value transfer described above corresponds to a primitive transaction. In some cases,

a primitive transaction corresponds to an actual protocol run of the underlying payment

system.

For example, a withdrawal protocol run in a cash-like system is a value subtraction

primitive transaction (Figure 6.3). In other cases, it may only represent the view of a

subset of the players. For instance, a payment protocol run in a cheque-like payment

system is seen by the set fpayer, bankg as a value subtraction primitive transaction while

it is seen by the set fpayer, payeeg as a payment primitive transaction (Figure 6.4).

Note that these subgroups correspond to the di�erent applications that a player may

use. For example, Alice used the standard on-line ticket purchase application in our

example scenario (Section 1.2). This application knew about BobAir, but does not have
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to know about Alice's bank (in fact, it need not even know which payment system was

used to pay for the ticket). The purchase will be viewed by this application as a payment

primitive transaction, involving only Alice and BobAir. Alice may also have a banking

application which she uses to interact with her bank in managing her bank account. This

application does not know about BobAir. It will see the purchase as a debit from Alice's

account | in other words, as a value subtraction.

If a value transfer is reversed (e.g., the payee refunded the payer), it is equivalent to

the value transfer not having taken place at all. However, it must still be possible to

express a claim like \Alice did pay $200 to BobAir in the past" which must be true, even

if the payment was later refunded by BobAir. If this is not su�cient, we can make reverse

value transfers to be distinct primitive transactions.

Protocol

Bank

withdrawal

Value Transfers

Bank

value subtraction

Payer Payer

maps to

Figure 6.3: Primitive Transactions in a Cash-Like System for withdrawal

6.2.4 Statements of Dispute Claims

Syntax

We express a statement of a dispute claim as a formula in a �rst-order logic with certain

modal extensions. The language of the logic consists of the following symbols: logical con-

nectives, typed variables, typed constants, and relational connectives (which are functions

of variables/constants of the appropriate type).
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Payer

Bank

value subtraction

PayeePayer

payment

Payee

payment

Payer

value claim

Bank

Payee

Protocol

Value Transfers

maps to

Figure 6.4: Primitive Transactions in a Cheque-Like System for payment

There are three types of variables: primitive transaction (pt), roles, and attributes.

The pt variable can take its value from a well-de�ned enumerated set. In the case of the

payment service, this set consists of payment, value subtraction, and value claim.

Each primitive transaction has a set of well-de�ned role variables associated with it. For

example, payment has payer and payee as associated role variables. The role variables

belong to a type called id val, which represents distinguished names according to some

well-de�ned naming scheme (e.g., account numbers or certi�ed e-mail addresses). Each

primitive transaction also has a well-de�ned set of attribute variables associated with it.

For simplicity, we assume that all value transfer primitive transactions have the same set

of attribute variables: amount, time,1 and ref. The attribute variables are typed | they

take their values from the appropriate domains. In the case of the payment service, we

assume that amount, time, and ref take values from domains named amount val, time val,

and ref val respectively. Table 6.2 summarises the set of variables for the generic payment

service.

Each attribute, depending on its type, has a �nite set of relational operators associated

with it. Table 6.3 lists the variables in the generic payment service, their domains, and

1There may be several di�erent timestamps involved; for simplicity, we assume that there is only one
instant at which the transaction is considered to have taken place.
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Primitive Transaction Roles Attributes

value subtraction user, bank amount, time, ref
value claim user, bank amount, time, ref
payment payer, payee amount, time, ref

Table 6.2: Dispute Claim Variables for the Generic Payment Service

applicable relational operators. We also allow two logical connectives: ^ (conjunction)

and :(negation), a parenthetical operator for specifying precedence, and modal operators

called can without, could without, and once. Two additional operators called never

and always are also used. A comma indicates concatenation.

variable domain relational operators

pt fpayment, value subtraction, value claim g =
<role> id val =
amount amount val < � = � >
time time val < � = � >
ref ref val =

Table 6.3: Attributes and Operators of Primitive Transactions

The rules to construct valid dispute claim statements are described in the family of

grammar speci�cations shown in Table 6.4. Angle brackets indicate place holders which

must be instantiated to derive a concrete grammar. Ellipses indicate that in a concrete

instantiation, the rule may contain a repetition of same type of terms as the preceding

term. Given a particular service, such as the generic payment service, the place-holders

are instantiated, leading to a concrete, single grammar, as shown in Table 6.5. From

now on, we will simply write primitive transaction name to denote the predicate

`pt=primitive transaction name.' Also, when a conjunction (^) is obvious, we omit

it. For example, `payment payer=Alice payee=BobAir' is shorthand for `pt=payment ^

payer=Alice ^ payee=BobAir'.
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claim ::= role claims claim stmt
claim stmt ::= modal stmt k : modal stmt k (modal stmt)

modal stmt ^ modal stmt
modal stmt ::= possibility stmt k certainty stmt k basic stmt
certainty stmt ::= always basic stmt k never basic stmt
possibility stmt ::= role set could without role set basic stmt k

role set can without role set basic stmt k
once basic stmt

role set ::= role k role, role set
basic stmt ::= role part ^ attr part
role part ::= pt=<primitive tx> ^ role list k : : :
role list ::= role=id val k role=id val ^ role list
attr part ::= true k attr val pair ^ attr part
attr val pair ::= <attr> <OP> <value> k : : :
role ::= <role> k : : :

Table 6.4: Family of Grammars for the Dispute Claim Language

claim ::= role claims claim stmt
claim stmt ::= modal stmt k : modal stmt k (modal stmt)

modal stmt ^ modal stmt
modal stmt ::= possibility stmt k certainty stmt k basic stmt
certainty stmt ::= always basic stmt k never basic stmt
possibility stmt ::= role set could without role set basic stmt k

role set can without role set basic stmt k
once basic stmt

role set ::= role k role, role set
basic stmt ::= role part ^ attr part
role part ::= pt=payment ^ payer=id val ^ payee=id val k

pt=value claim ^ user=id val ^ bank=id val k
pt=value subtraction ^ user=id val ^ bank=id val

attr part ::= true k attr val pair ^ attr part
attr val pair ::= amount relop amount val k time relop time val k

ref=ref val

relop ::= < k � k = k 6= k � k >
role ::= payer k payee k user k bank

Table 6.5: Grammar for the Payment Dispute Claim Language
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Semantics

First, let us try to capture the intuitive semantics of the language for expressing dispute

claims. During the execution of a protocol, the system as a whole goes through a series

of well-de�ned global states. The global state consists of the initial secrets (e.g., private

keys) of all the players involved, all message exchanges up to that point, and all sources of

randomness. Therefore it has enough information to determine an assignment to all the

variables that can possibly appear in a dispute claim phrased in our claim language. Given

a dispute claim phrased in our claim language, a veri�er who knows the entire global state

can decide with certainty if the claim is true or not. However, it is extremely unlikely

that any veri�er can know the entire global state (e.g., private keys of other players).

The goal of dispute resolution is for the veri�er to attempt to partially reconstruct the

sequence of global states (along with their contents) that the system has gone through,

arriving at the current state. A veri�er can do this based on evidence presented to it. It

would require a payment system-speci�c function to interpret the evidence. Based on this

interpretation, the veri�er can assign values to some of the variables. We will call this

a partial assignment. A partial assignment may be contingent on the trustworthiness of

the entities involved in the creation of the evidence. The claim is evaluated with respect

to the current state, and/or the sequence of states traversed so far.

Once a su�ciently complete interpretation of a state is available, the veri�er can

determine if a given basic stmt s is true in that state. The meanings of the modal

operators are intuitive. The statement \always s" is true at a state S if s is true in S

as well as in every state reachable from S. The meaning of \never s" is analogous. The

statement \P can without Q s" is true if there is a state S0 where s is true, and it is

possible for P to cause the transition from S to S0 without any action from Q. Given

a path p = fS0; : : : Sng, the statement \P could without Q s" is true in p, if (a) \P

can without Q s" at some state S in p, and (b) if at some later state in p, it was no

longer possible to reach a state where s is true, then P was responsible for this change.

Now, let us try to de�ne the semantics more formally. Our model consists of a set of

states S, a set of roles R, a set of transitions T � S � S, and an interpretation L which

assigns a value of the appropriate type to variables in the language.

A role uniquely identi�es a service access point (e.g., payer). We assume that there

is an infrastructure that enables a veri�er to unambiguously identify and authenticate

the identity of a player (which is some value from the domain id val) playing any given

role. We assume that a multi-party protocol can be described by a directed acyclic graph
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(DAG), the edges of which correspond to message transmissions between the players, and

the nodes correspond to internal global states. We can capture this property by de�ning

that each state has a cardinality, de�ned by the function card () : S ! N , where N is

the set of natural numbers. The cardinality is used to impose a partial temporal order

over S. If (S1; S2) 2 T , then card (S2) > card (S1). If the protocol is speci�ed in the

form of local �nite state machines, they can be �rst unwound into a set of DAGs which

can then be combined into a single DAG. The sender of a message is the agent associated

with the edge that represents the message in the DAG. A function agent() : T ! R

identi�es the role associated with a given transition. (Recall that an interpretation will

associate an id val with a role, thereby associating an id val with each transition as well.)

Given a path p, in the form of a sequence of states fS0; S1; : : : ; Sng, the function agents(p)

returns the union of agent(Si; Si+1); for i = 0 : : : n� 1.

The veri�er has a payment system-speci�c evaluation function which can be used

to associate a partial assignment with a given state. The relational operators have the

usual semantics. Thus, given a su�ciently complete partial assignment, and a proposition

involving an attribute, a relational operator, and a value, it is possible to evaluate if the

proposition is true. Given a global state S with a partial assignment, and a basic stmt

s of the form \role part attr part" (where role part and attr part are conjunctions of

propositions as described in the previous section), s is true in S, if role part and attr part

evaluate to true after the partial assignment is made. Since the assignment is partial, the

veri�er may not always be able to decide whether a claim is true or not, for example, if

the evidence supplied is incomplete.

Figure 6.5 illustrates the semantics of the modal operators. The �gure shows the

DAG description of a protocol, including the states where a certain basic stmt s is true.

Suppose that the veri�er has concluded, based on the evidence submitted, that the system

went through states S0; S1; S2; S3. Then,

1. If the statement `always s' is true in a state (e.g., S100), then it is also true in all

states reachable from it, in all possible paths. Similarly, if `never s' is true in a

state (e.g., S3; S201), it is also true in all states reachable from it.

2. The statement `P2 can without P1 s' is true in S1 because P2 can cause the transfer

to S100.

3. The statement `P2 could without P1 s' is true in the path fS0; S1g because of 2.

It is also true in the path fS0; S1; S110g even though s itself cannot be true in S110
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Time

P1

P1

P2 P2

P2

P3
P3

S0

S1

S200

S2
S100

S110

S201

S3

States where `never s' is true

States where `always s' is true

States where `s' is true

`P2 could without P1 s' is
- true in path fS0; S1; S110g
- false in path fS0; S1; S2; S3g
- false in path fS0; S1; S2; S200; S201g

`P2 can without P1 s' is
- true in S1
- false in S0, S3 and S201

`once s' is
- true in fS0; S1; S2; S200g
- true in fS0; S1; S2; S200; S201g
- true in fS0; S1; S100g

Figure 6.5: Semantics of Dispute Statements
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or any state reachable from S110. This is because, in S1 it was still possible to reach

a state where s would have been true (S100) and it was P2 which chose not to e�ect

that transition.

4. Given a path, the statement `once s' has the usual meaning in linear temporal logic

| for example, given fS0; S1; S2; S200; S201g, `once s' is true in S200 and S201.

More formally, we can de�ne the semantics of the can without operator as follows:

S ` PSET can without QSET s, i� 9 Sn such that

Sn ` s

^ 9 p = fS0 = S; S1; : : : Sng such that

(Si; Si+1) 2 T , i = 0 : : : n� 1

^ agent(S; S1) 2 PSET

^ QSET \ agents(p) = �

That is, given a state S, if there is valid path p leading to a state Sn, such that s is true

in Sn, and the �rst transition in p can be made by a member of PSET and no one from

QSET is required to make any transition in p, then the statement `PSET can without

QSET s' is true in S. The can without operator is used to make a statement about the

possible future states of the system. In contrast, the could without operator is more

general. It is de�ned with respect to a path (more precisely, with respect to a state and a

speci�c path leading to that state). It can be used to make a statement about the system

at the end of the path about where it can go in the future., as well as where it could

have gone in the past. The semantics of the could without operator can be de�ned in

terms of the can without operator: (In the following, I do not explicitly mention that

all paths considered must consist of valid transitions only.)

For a path p = fS0; S1; : : : Sn = Sg,

p ` PSET could without QSET s, i�

S ` PSET can without QSET s

_ 9 Si 2 p,i = 0 : : : n� 1 such that

Si ` s

^ Si+1 ` : s

^ agent(Si; Si+1) 2PSET
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_ 9 Si 2 p,i = 0 : : : n� 1 such that

Si ` PSET can without QSET s

^ 9 Sj 2 p, j = i : : : n� 1 such that Sj ` ALL can without QSET s

^ Sj+1 ` : ALL can without QSET s

^ agent(Sj ; Sj+1) 2 PSET

The set ALL represents the set of all roles for the primitive transaction referred to in

s. The rule identi�es three disjunctive conditions to evaluate the truth of the statement

`scould=PSET could without QSET s' with respect to a path p. The �rst disjunction

says scould is true if `scan=PSET can without QSET s' is true in the last state of p.

The second disjunction says that if s was true at some state in p, but not at the state

immediately following it, and the transition was caused by someone in PSET, then scould

is true with respect to p. The third disjunction is a little more complicated. The intent

is to capture the following case. Sometime in the past, it was possible to reach a state

where s is true (i.e., there was a path, say p0 from some state Si in p, making scan true

at Si). The agents of p
0 consist of some members of PSET but none from QSET. It may

also consist of other entities, not in either of the above sets. The statement `(PSET [

agents(p0)) can without s' should therefore hold at every state in p subsequent to Sj .

If it fails to hold after a certain transition, and that transition was caused by a member

of PSET, then we can assert that scould is true in p. In the interest of simplicity, we relax

the de�nition a little by using the set of all roles (ALL) instead of (PSET [ agents(p0)).

The last disjunction captures this property.

Similarly,

p ` once s i� 9 S 2 p such that S ` s

S0 ` always s; i� 8 p = fS0; : : :g; p ` 2 s

S0 ` never s; i� 8 p = fS0; : : :g; p ` 2 : s

The notation \p ` 2 s" has the usual meaning in linear temporal logic: in the sequence

of states p, the formula s holds true in every state. In Section B.0.1, we will look at an

example payment system to see how we can build a global state transition diagram.
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Extensions

The claim language described in the previous section constitutes the set of symbols and

grammar rules necessary for specifying dispute claims in the generic payment service. The

language constructs deal with the possibility of multiple time-lines. Therefore, it belongs

to the family of branching temporal logics [Eme90]. It does not include all possible

temporal logic constructs: for example, the until operator. I have only included the

constructs that appeared to be necessary to express the type of claims described earlier.

However, I have included constructs like can without and could without, which are

not standard branching temporal logic constructs.

The language can be extended as needed. One generic extension is the inclusion

of additional primitive transactions which do not represent value transfer but may be

relevant in disputes. One example is the transaction started by the authorise primitive in

cheque-like systems. Another example is a \statement of account" transaction where a

bank issues a statement indicating the current balance on a user's account.

A second type of generic extensions can be used to derive the language to describe the

messages in a generic dispute protocol between the veri�er and the player. One extension

is the addition of a function operator witnessed, as described in Section 6.3.2 below.

Another extension is to allow a statement to refer to multiple instances of one or more

primitive transactions by using functions, such as summation (e.g., statements like \the

sum of the amounts involved in all value subtraction primitive transaction between

Jan 1 and Jan 20 is less than 400").

Finally, individual payment system adapters may introduce additional primitive trans-

actions, and role/attribute variables necessary to describe their protocols. Such additions

will not be visible at the interface to the payment dispute service; but they can be useful

internally.

Examples

The �ve dispute claims mentioned in Section 6.2.2 correspond to the following statements

in our language:

� payment payer=Alice payee=BobAir amount=$200

� payment payer=Alice payee=BobAir amount=$200 time < Jan12

� : payment payer=Alice payee=BobAir amount=$200
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� payee could without payer payment payer=Alice payee=BobAir amount=$200

time < Jan12

� : value subtraction user=Alice bank=CarolBank amount=$300 ref =\#434:

for ight 822 on Jan 19:payment to BobAir"

If players have evidence proving that a certain value transfer transaction has reached

a guaranteed �nal state, they may choose to make stronger claims, using the always

or never operators. For example, if Alice has a receipt for the payment made using

a payment system which does not support refunds, she may claim \always payment

payer=Alice payee=BobAir amount=200" instead.

6.3 Supporting Claims with Evidence

6.3.1 Architecture for Dispute Handling

Overview

Recall that there are three types of players in a dispute: the initiator who starts the

dispute by making a claim, the veri�er who co-ordinates the dispute handling and possibly

makes the �nal decision about the validity of the claim, and a set of responders who may

be asked by the veri�er to participate in the process.

At the access point of each player, there is a \user" part (which may be the human

user, or an application program acting on his behalf) and a \system" part (which is

an implementation of the dispute service: e.g., an iKP implementation of the generic

payment dispute service). The veri�er's system has two parts: one receives a claim, and

associated non-repudiation tokens, analyses them, and determines the conditions under

which the claim is true, and the conditions under which it is false; the second part uses

the result of the �rst part to make a �nal decision. The second part is essentially a policy

engine, and may be a human arbiter, external to the dispute handling service. It needs

to use trust assumptions. In the simplest case, this may be in the form of a blacklist of

untrusted principals. It is possible that the trust assumptions require a more elaborate

representation (for example, as in PolicyMaker [BFL96]).

Figure 6.6 illustrates the various interactions during a dispute transaction. To begin

a dispute, the initiator constructs a dispute claim. The claim is sent to the veri�er. The

veri�er's system decides which players need to prove which statements in order to resolve

this dispute claim. This may involve interaction with the systems of players, asking them
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what evidence they can produce. Once the veri�er's system has made a decision, the

players' systems are informed of the statements they are required to prove.

Each player's system then engages in a proof protocol with the veri�er's system. Recall

that during the dispute protocol, the veri�er's goal is to determine both the current state

of the payment system, and the sequence of states through which it has progressed, and

that the validity of the claim should be evaluated with respect to this state and sequence.

At the end of the protocol, the veri�er's system returns an analysis of the claim. The

analysis consists of a likely decision (yes or no) as well as the set of players who were

witnesses to the decision and the set who were against it. If there is insu�cient evidence,

the veri�er's system may throw an exception. The veri�er makes the �nal decision by

combining this analysis with his trust assumptions.

This leads to the following requirements on the design:

� The veri�er needs the following service primitives:

{ map: Takes a claim as input and returns a list of (player, statement) pairs.

Each player is required to prove the corresponding statement.

{ analyse: Takes a claim, a set of players, and the statements they need to prove

as input, engages in some proof protocol (we assume that it is as simple as

receiving one or more non-repudiation tokens, interpreting them, and making

an inference on the statements proved), and returns the set of players according

to which the claim is true, the set of players according to which it is false, and

the set of players who have been found to be cheating.

{ decide: Takes a claim, and two sets of players as input, and returns one of yes,

no, or cannot-decide, based on the veri�er's trust relationships as output. This

is the result of the dispute.

� Each player needs the following primitives:

{ constructClaim: which allows the user to construct a claim, and

{ prove: which takes a statement as input and attempts to prove it (maybe as

simple as retrieving the pieces of evidence and returning them to the caller)

Enhancements

We have limited ourselves to disputes in a generic payment service where there is only one

service boundary. The system is \below" the boundary and the user or his application
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constructClaim()

Initiator Verifier

System System

claim

claim
map(claim)

(player,statement)*

Responder

System

decision

prove(statement1) prove(statement2)

decision decision

analyse(claim, (player,statement)*)

decide(statement, yes−set,no−set)

User UserUser

proof token proof token

proof tokens (proof protocol)

prove(statement1) prove(statement2)

(statement,yes−set,no−set,cheaters−set)*

Policy

Figure 6.6: Basic Dispute Protocol
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is \above" the boundary. Comprehensive electronic commerce frameworks such as SEM-

PER [Wai96] are structured into multiple layers. A payment usually take place in the

context of a higher layer transaction (e.g., a fair exchange) which in turn may take place

in the context of a transaction in the layer above (e.g., an instance of an on-line purchase

application). A dispute claim made in a higher layer needs to be suitably mapped to

corresponding claims in the lower layers. The running of the dispute protocol needs to

be co-ordinated among the di�erent levels. This is left as an open problem.

6.3.2 Evidence and Trust

During a dispute, players have to support or counter dispute claims by proving certain

statements to the veri�er. The ability to prove statements comes from pieces of evidence

(evidence tokens) accumulated during a transaction of the primary service. The simplest

form of evidence is a non-repudiation token that can be veri�ed by anyone who has the

necessary public keys, certi�cates, certi�cate revocation lists etc. The proof protocol

in this case is to simply present the token to the veri�er. There can be more involved

proof protocols, such as in \undeniable signature schemes" [CvA89]. In the following, we

will assume only simple proof protocols consisting of the presentation of non-repudiation

tokens.

Often, non-repudiation tokens cannot substantiate an absolute statement. In general,

an evidence token corresponds to a non-repudiable assertion by one or more players

that they believed that the protocol reached a certain state (with an associated partial

assignment). Such an assertion is a witnessed statement. During the dispute protocol, the

veri�er asks various players to prove witnessed statements (in the proof request messages

in the dispute protocol of Figure 6.6). We can extend the claim language in Section 6.2.4

to express witnessed statements by adding a function operator called witnessed. The

grammar is extended by adding the following rule.

witnessed stmt ::= role witnessed asserted stmt
asserted stmt ::= basic stmt k certainty stmt

The witnessed operator takes two parameters: an asserted stmt s, and a role P . The

statement \P witnessed s" is true if P has non-repudiably asserted that the transaction

reached a certain state, with an associated partial assignment.
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As we saw, a dispute claim is a statement of certain attributes of a primitive transac-

tion. Consider a dispute claim discussed earlier: Alice claims to have made a payment of

$200 to BobAir. There is no way to say with absolute certainty whether the transaction

actually took place. A receipt from BobAir proves the statement

BobAir witnessed payment payer=Alice payee=BobAir amount=$200

Whether a veri�er can infer

payment payer=Alice payee=BobAir amount=$200

depends on the context, the trust assumptions of the veri�er, and even on the actual

payment system allegedly used for the value transfer. For example, in a dispute against

BobAir, the veri�er could accept a signed receipt from BobAir as su�cient evidence to

conclude that the latter claim is true. However, if BobAir and Alice are in collusion and

want to convince a third party (say the tax authorities), BobAir's signed receipt alone is

not su�cient. In this case, if the veri�er trusts the bank, it can accept a signed statement

from the bank as su�cient evidence.

In general, to decide the validity of a dispute claim, the veri�er asks various players to

prove various statements. Which players need to prove which statements depends both

on the internal design of the particular payment system and the trust assumptions of

the veri�er. We assumed that the proof protocols consist of forwarding non-repudiation

tokens. The analyse method will consult the inference engine and will return a result of

the form:

W
f[:] <claim stmt> yes=f: : :g no=f: : :g cheating=f: : :gg

Each component of this disjunction contains either the original statement in the claim

or its negation. In addition, each component contains three optional sets of players: the

set of cheating players, the set of players whose statements are in agreement with the

conclusion and the set of players whose statements are contrary to the conclusion. The

veri�er will pick one of these disjunctions, depending on the set of players he trusts. If

the evidence presented is insu�cient to decide one way or the other, the system may

raise an exception. Further, it may also be able to detect if some player has cheated (for

example, if the same player has witnessed a certain statement and its exact opposite, it

may imply that the player had cheated). Note that a carefully designed, secure, payment

system can be rendered insecure if the inference engine used by the veri�er is wrong. It
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is important to make sure that the inference engine used not degrade the security of the

protocol.

For instance, in the example presented at the beginning of this section, a conclusion

of the form:

payment <role part> <attr part> yes=fpayer,payeeg no=fg

will be applicable in the �rst case but not in the case of Alice and BobAir colluding,

whereas a conclusion of the form:

payment <role part> <attr part> yes=fbankg no=fg

will be applicable in both cases.

A player may have gathered several evidence tokens during a particular transaction.

Not all of them may be necessary to substantiate a dispute claim about some aspects of

the transaction. Thus, given a statement to prove, a system should use only the minimal

subset of the relevant evidence.

6.4 Summary and Conclusion

I have attempted to show why a generic dispute service is needed for payment systems.

I have developed a language to express payment dispute claims. In Section B.0.1,

I show the how evidence tokens in an example payment system can be used to analyse

claims made in this language. A crucial part of the dispute handling framework is the

veri�er's inference engine. When a new payment system is adapted to the framework,

the critical step is to identify the inference rules applicable to that system. In general,

the process of deriving the inference rules is equivalent to proving the payment system

correct. It is also necessary to verify that the default inference rules do not violate the

security of the system. At the current state of knowledge, this appears to be a hard task.

On the other hand, the aim is not complete automation of dispute resolution. Thus,

even with an incomplete set of inference rules, a payment system can be incorporated into

the framework. The most trivial inference rule is \ask the human user!" Another impact

of the framework is that it can help the designers of new payment systems to derive the

inference rules as an integral part of the design process.
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7.1 E�ectiveness of Solutions

I have presented a set of fair exchange protocols and proved their properties. The network

security group at the IBM Zurich Research laboratory is currently working on implement-

ing these protocols. The implementation experience will provide further validation of the

e�ectiveness of the solutions to the fair exchange problem. IBM is in the process of ap-

plying for a United States patent for the design of the optimistic fair exchange protocol

and the techniques for the application of veri�able encryption.

I have provided informal arguments for the security of the S3 signature scheme. It

was not validated by an implementation.

The generic payment service has been validated by a prototype implementation.

Adapters for several payment systems have already been designed and implemented. The

design and the prototype implementation also served as the basis for a software product.

I presented a language to express payment dispute claims. (In Section B.0.1, I outline

how this can be used with an example payment system.) This is only a �rst step. The

e�ectiveness of the language can be judged only in the course of applying designing and

implementing a full-edged dispute handling framework. The network security group has

recently embarked on a project to build and experiment with dispute handling support

in electronic payment systems. This project will use the work described in Chapter 6 as

the starting point.

7.2 Other Aspects

Throughout this dissertation, I have made use of third parties which are trusted to per-

form speci�c functions. Using such third parties makes it possible to provide functionality

that would otherwise be prohibitively expensive, or even impossible. There is no such

thing as a \trusted third party" which is trusted in general { it is important to clearly

de�ne the speci�c functions with respect to which a given third party is trusted. Where

possible, trust in such third parties can be further constrained by, for example, (a) de-

signing systems that include support for veri�ability of third party, and (b) implementing

the third party in a distributed manner. The essential role of third parties is to perform

trusted computation.

Another way to achieve trusted computation is to use a trusted computing base. Typ-

ically, it is implemented in the form of tamper-resistant hardware. Performing trusted

computation this way makes o�-line transactions possible. Recent trends in digital signa-
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ture legislation indicate that trusted personal hardware devices will likely become manda-

tory for electronic transactions.

I have addressed only one aspect of the security issues associated with electronic

commerce. There are a number of other aspects to electronic commerce. An im-

portant concern is privacy. There is a large body of work addressing the issue

of user anonymity [Cha85, Cha92], though practical implementations are still not

widespread [GT96, RR97]. Another critical issue is copyright protection [CMPS95, BS94,

PS96]. If Alice buys a book from Bob, and illegally redistributes it to others who have not

paid Bob, is it possible to detect Alice's incorrect behaviour? Is it possible to prevent it?

Trust management is an overarching problem. This is tied to the problem of certi�cation

of names [BFL96, RL96]. If Alice receives a message which is successfully veri�ed by

VBob , how much assurance does Alice have that it is really Bob who signed it? If Alice

and BobAir do not have a mutually acceptable third party a priori, can they �nd one

on the y, based on recommendations or guarantees from their respective trusted third

parties?

Ford and Baum provide an excellent overview of the current concerns on making elec-

tronic commerce viable [FB97]. They correctly observe that there is a long way to go

before the legal and business practice controls necessary for making widespread use of

electronic commerce are well understood. They assert that \from the technological per-

spective, there are no major outstanding challenges." However, as electronic commerce

becomes more widespread, issues that are considered less important now (such as pro-

viding fairness, or supporting various levels of privacy) will grow in their urgency and

importance. There is still plenty of scope for interesting technical work in the area.

The term \fairness" has been used in other contexts in computer science. Micali intro-

duced the notion of fair public-key cryptosystems in [Mic93]. According to his de�nition,

a fair public-key system is one which guarantees that a specially designated player can

understand all messages encrypted with a key using this public-key system, even without

the co-operation of the entity that created the messages. The intent behind fair public-

key cryptosystems is that the designated player will access encrypted messages only under

\proper circumstances envisaged by the law." In general, this notion of fairness is not

the same as ours. However, if the \proper circumstances" correspond solely to incorrect

behaviour by the creator, then this notion of fairness is similar to ours. Camenisch et

al [CPS95] introduced the notion of fair blind signatures. A blind signature protocol

allows a player A to obtain a signature from a signer S, so that S's view of the protocol

does not allow it to link the message and its signature. Thus, A can send the signature
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to someone else without S being able to link this message transmission to the original

blind signature protocol run. In fair blind signature schemes, a trusted third party can

provide information which will enable S to link the two events. Blind signatures are used

to build anonymous cash-like payment systems, where a coin is represented by a blind

signature. Fair blind signatures allow the anonymity of A to be revoked with the help of

the trusted third party. Again, assuming that the trusted third party behaves honestly,

fair blind signature schemes enable fairness in our sense of the word.

The notion of fairness is also used in scheduling schemes. A fair scheduling scheme

guarantees that a waiting client is eventually served. Unlike in our case, malicious be-

haviour is usually not a concern in these scenarios.

7.3 Summary of Contributions

I have made the following contributions in this dissertation.

� Proposed and analysed an optimistic protocol for contract signing, which is the

�rst such protocol to guarantee timely conclusion under the assumption of resilient

communication channels (which is weaker than assuming reliable communication

channels).

� Generalised the approach to the exchange of forwardable items and analysed the

resulting fair protocol, identifying characteristics (generatability and revocabil-

ity) that make it possible to provide a strong fairness guarantee,

� Proposed and analysed a speci�c optimistic protocol for the fair exchange of gen-

eratable items.

� Proposed and demonstrated the use of veri�able encryption to add generatability

to items.

� Proposed a new non-repudiation technique called server-supported signatures,

which enables users with limited computational resources to construct strong digital

signatures and showed how this technique can be used to provide several services

required in electronic commerce, including the creation and gathering of evidence

that can be used in disputes.
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� Proposed and prototyped an architecture for a generic payment service which

enables

{ development of business applications (which use payment services) indepen-

dent of speci�c payment systems,

{ transparent selection of a payment instrument to be used in a transaction,

based on various factors, including an abstract speci�cation of security services,

and

{ the possibility of improving security services provided by speci�c payment

systems.

� Argued the importance of a systematic approach to handling disputes and proposed

a language to express dispute claims that may arise in the course of using the generic

payment service.

7.4 Directions for Future Research

There are several directions to continue research. In fair exchange, the use of veri�able

encryption enables the exchange of signatures. A remaining open question is whether it

is possible to design optimistic protocols to exchange arbitrary items (such as encrypted

data) while guaranteeing strong fairness? The veri�able encryption technique in Chap-

ter 3 uses the cut-and-choose method, which requires the construction and transmission

of a large number of candidate permit components, half of which are rendered useless

at the end of the protocol. Is it possible to avoid the cut-and-choose approach in the

veri�able encryption protocol? Another avenue of research is to explore the issues in

distributing the role of the third party among multiple entities. Distribution will lead to

high availability and increased trust, both of which are important in the scenarios where

fair exchange protocols will be applied.

The dispute claim language presented in this dissertation is only a �rst step in de-

signing a framework for handling disputes in electronic commerce. Can the language be

validated by using it with many di�erent real payment systems? Could the approach

generalise to constructing claim languages for other services such as a non-repudiation

service? I did not address the complex task of constructing inference engines, leaving it

to be done separately for each adapter. An interesting, and useful, contribution would

be to investigate whether a common part of the inference engine can be identi�ed, and
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separately de�ned. It may be possible to �nd inference rules that are common to all

payment systems of a given model, or indeed to all payment systems in general. De�ning

a partial inference engine will ease the task of the adapter designers. Finally, a complete

framework for dispute handling must incorporate appropriate legal mechanisms.
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Part of the work described in this thesis was carried out in the context of the SEMPER

project. SEMPER, a three year project funded by the European Commission and the

Swiss Federal government, began in Fall 1995. The Network Security and Electronic

Commerce group at the IBM Zurich Research Laboratory provides technical leadership

for SEMPER. I joined this group in November 1995, shortly after SEMPER was launched.

My work was supervised primarily by Dr. Michael Waidner who is the manager of the

group. In the following, I acknowledge contributions and help from colleagues in my

work. Except where mentioned, the collaborators in my work are all from the Network

Security and Electronic Commerce group.

The work on optimistic protocols for fair exchange was initiated by Michael Waid-

ner early 1996. Initial attempts at a solution were carried out as a joint e�ort between

Matthias Schunter (Universit�at des Saarlandes) and me, supervised by Michael Waid-

ner. This work was reported in [ASW96a, ASW96b, ASW97a]. I conceived the idea of

using veri�able encryption to make items generatable. Victor Shoup and I carried out

a literature survey to identify the techniques that can be used to implement publicly

veri�able encryption. We also jointly designed the improved version of the optimistic fair

exchange protocols which provides the timeliness guarantee in an asynchronous model.

This improved protocol was reported in [ASW97b, ASW98]. Chapter 2 is based on this

work. The notion of veri�able encryption, and its use in fair exchange of digital signatures

were reported in [ASW97c, AS98]. Chapter 3 is based on my contributions to the work

described in [ASW97c]. Ceki G�ulc�u has begun an implementation of the fair exchange

protocols described in this dissertation.

The original idea of combining a hash-chain and a traditional digital signature scheme

was conceived by me. I developed the idea further under the supervision of Gene Tsudik

(then at IBM Zurich Research Laboratory) and Michael Waidner resulting in the S3

protocol. This work was reported originally in [ATW96] and expanded in [ATW97].

Chapter 4 is based on the latter work.

Work on a generic payment service for SEMPER was begun in October 1995 by

Michael Waidner and Jos�e Luis Abad-Peiro. I took over primary responsibility for this

work in December 1995. In the �rst phase of the payment service work, I developed a

detailed design that included

� the notion of a hierarchy of service interfaces based on models of payment systems,

and
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� selection of payment instrument based on three classes of factors: user preferences,

requirements, and negotiations.

I carried out the proto-type implementation of the generic payment service in SEMPER.

Several other participants in SEMPER worked on designing and implementing adapters

for various payment systems. In late 1996, IBM began work on a merchant-side generic

payment service product. They used the SEMPER payment service block as a start-

ing point. Discussions with the software engineers at IBM Secure Electronic Payments

group at Research Triangle Park, Raleigh, NC, led to the conclusion that support for

an asynchronous model is essential. Inspired by GSS-API [Lin97], I designed the token-

based interface de�nition as a solution to this problem. My design was used as the basis

for the IBM CommercePOINT e-till product. Several ideas I used in the design of the

generic payment service are being adapted by designers of other blocks in SEMPER.

These include the notion of transactions and transaction records, protocol for negoti-

ation of parameters and the token-based de�nition of services. A survey of electronic

payment systems was reported in [AJSW97]. The design of the generic payment service

was described in [APASW96, APASW98]. Chapter 5 is based on this work.

The work on the dispute handling framework is primarily my contribution, with help

from Els van Herreweghen, and Michael Steiner. This work was described in [AHS98a,

AHS98b].
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Primitive Input Output Description

implemented byTransaction

pay payee, amount,
options, ref.a

send a payment

receivePayment [payer,] [amount,]
options, ref.

payer, amount receive a payment

reversePayment transaction record ask/get a refund

reverseReceivedPayment transaction record make a refund

Additions for cash-like model

withdraw amount, options, ref. load money into purse

deposit amount, options, ref. unload money from
purse

Additions for cheque-like model

receiveRawPayment [payer,] [amount,]
options, ref.

payer, amount receive a payment (de-
fer authorisation)

authorise authorise a previous
raw payment

capture [amount ] capture a previous raw
payment

multiCapture list of transaction
records

capture a set of previ-
ous raw payments

Table A.1: Generic Payment Service: Value Transfer Services

aref. allows this payment to be tightly linked to its context, e.g an on order and its description
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Primitive Input Output Description

implemented by Purse

startTransaction transaction create a transaction of
this payment system

implemented by Transaction/Transaction Record

abort abort the transaction, if
possible

suspend suspend the transaction

resume resume a suspended
transaction

getState state retrieve the current state
of a transaction

Table A.2: Generic Payment Service: Transaction Management Services

Primitive Input Output Description

implemented by Payment Manager

createPurse payment system name,
purse name

purse create a purse of the spec-
i�ed payment system and
name it as indicated

deletePurse purse delete the speci�ed purse

implemented by Purse

init perform any necessary ini-
tialisation to make the
purse usable in the current
session

disable disable an initialised purse
so that it is no longer avail-
able in the current session

setup perform any necessary con-
�guration to make the
purse usable

Table A.3: Generic Payment Service: Purse Management Services
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Primitive Input Output Description

implemented byPayment Manager

selectCandidatePurses contexta list of purses select a list of purses, as
per context

selectPurse context purse select a single purse as
per context

selectPayingPurse context purse select a purse for pay-
ment

selectReceivingPurse context purse select a purse for receiv-
ing payment

acontext contains information like the identity of the peer, type and amount of transaction, security
requirements, etc.

Table A.4: Generic Payment Service: Purse Selection Services

Primitive Input Output Description

implemented by Payment Manager

getListOfPurses criteriaa list of purses list of usable purses

getListOfAllPurses criteria list of purses list of all purses

getListOfTransactions criteria list of transactions list of transactions

getListOfKnownPurseClasses list of adapters list of known pay-
ment systems

getListOfEnabledPurseClasses list of adapters list of usable pay-
ment systems

acriteria can be used to limit the form (e.g. names of payment systems) and scope (e.g. only SET:Visa
purses) of the returned list

Table A.5: Generic Payment Service: Information Services (Payment Manager)
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Primitive Input Output Description

implemented by Purse

getAmount amount amount of money in
this pursea

getBank bank bank associated with
this purse

getBrandName brand name brand name

getPaymentSystemName payment system name name of the payment
system

getPurseType type type (e.g. pay-only)

getPurseAddress purse address get the address of this
purseb

getPrintableStatusInfo string get the state of the
purse as a printable
string

getListOfTransactions list of transactions list of transactions
made with this purse

isEnabled boolean is this purse usable in
this session?

isRegistered boolean is this purse usable?

isSecurityServiceO�ered security service boolean is the speci�ed service
supported?

isCurrencySupported currency boolean is the speci�ed cur-
rency supported?

supportedCurrency currency which currency is sup-
ported?

o�eredSecurityServices list of security services which security services
are available?

Additions for cheque-like model

getAmountFromBank amount what is the amount in
the bank account?

awhere applicable

bpurse address contains information like the name of the purse, name of the owner, communication
address (if relevant)

Table A.6: Generic Payment Service: Information Services (Purse)
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Primitive Input Output Description

implemented by Transaction Record

getAmount amount amount of the transaction

getPeer purse address identity of the peer purse

getPurseName purse name name of the purse

getType service type type of the transaction

getState state state of the transaction

isCompleted boolean is the transaction com-
pleted?

isActive boolean is the transaction active
now?

getStartTime time start time of the transac-
tion

getEndTime time time of the last state
change

Table A.7: Generic Payment Service: Information Services (Transaction and Transaction
Records)



Appendix B

Disputes in iKP

149



150 APPENDIX B. DISPUTES IN IKP

B.0.1 An Example: Evidence Tokens in iKP

We will now use a simpli�ed version of the iKP1 payment protocol to illustrate how to

represent the global states in the protocol in the form of a DAG, and how to associate

evidence tokens with global states. iKP was designed as a solution for securing credit

card payments over open networks. The original protocol was described in [BGH+95]. A

more detailed de�nition with some improvements is available in [Tsu96]. In this section, I

present a simpli�ed version of the 3-party iKP (3KP) where all three players are assumed

to have signature and encryption key pairs. We will see how the receipts gathered during

an iKP protocol run can be mapped to dispute statements de�ned for the generic payment

service in Section 6.2.4.

Protocol Description

In our simpli�ed version of iKP, there are three players: Customer (Payer), Merchant

(Payee), and Acquirer (Bank). Before the transaction begins, the customer and merchant

agree about the amount of payment (\price") and the description (\desc") of what the

payment is for. The �rst half of Table B.1 depicts the initial information of each player.

To begin the transaction, the payee:

� generates two random nonces v and vc; these nonces will later be used as part of

the receipt(s) from the payee,

� collects the common information (\com"). The common information consists of all

the pieces of information that will be known to all the parties at the end of the

transaction,2 and

� generates a signature SigM containing hashes of the data items mentioned above

and sends the signature along with any necessary information to the payer. This is

the signed o�er from the merchant.

The signature on the o�er makes it non-repudiable. But this is not relevant to our

discussion.

1SET [MV97] is the proposed standard for credit-card payments on the Internet. However, we will use
iKP here since its simplicity helps illustrate the approach more clearly.

2One item in the common information is a randomised hash of the description (HR(desc)). The payer
and payee already know the description. The randomised hash allows the bank to con�rm that the payer
and payee agree on the description without the bank's having to know the actual text of the description.
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Data Functions
M Merchant (payee) H() A one-way hash function
C Customer (payer) HR(m) A randomised one-way hash of m
A Acquirer (bank) ERX(m) A randomised encryption
TID Transaction ID of m with the public key of X
date Time stamp SX(m) Signature of X on m

price Amount information
desc Description of payment
v Con�rmation Authenticator
vc Cancellation Authenticator
CHI Card-holder Information
com Common information (M;C; price;TID; date;HR(desc);H(v))

Payment

o�er : C  ���
TID;date;H(v);SigM = SM(H(com);H(v);H(vc))
������������������������������������������ M

order : C �
Enc = ERA (price;H(com);CHI);SigC = SC(Enc;H(com))
���������������������������������������������! M

auth-request :M ���
TID;date;H(v);H(com);HR(desc);Enc;SigM ;SigC
�������������������������������������������! A

auth-response :M  ���������
yeskno;SigA = SA(yeskno;H(com))
������������������������������������ A

con�rm : C  ��������������
(v; yes)k(vc;no);SigA
������������������������������ M

Cancellation

cancel : C  �����������������
vc

���������������������������� M

Refund

refund-request :M �������
SigrefundM = SM(H(com);price; \refund")
��������������������������������������! A

refund-response :M  �������
SigrefundA = SA(H(com);price; \refund")
�������������������������������������� A

Figure B.1: Simpli�ed iKP Protocol
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The payer then sends an order message. This is the authorisation by the customer to

make the payment. The order is a signature SigC of the payer on two pieces of information,

� H(com), and

� an encryption of the price, the customer's account number (\CHI"), and H(com).3

The payee forwards the order along with the o�er to the acquirer requesting autho-

risation. The acquirer replies indicating whether the authorisation succeeded or not. For

simplicity, let us assume that the acquirer immediately transfers the money from payer

to payee if the authorisation is successful. The authorisation response SigA from the

acquirer is signed.

Once the payee receives the authorisation response, he will send a con�rmation to

the payer. The con�rmation contains the acquirer's authorisation response and the au-

thenticator v. The pair (SigM , v) constitutes a receipt by the payee that he received the

payment. If a payee decides to cancel a payment, he can issue a cancellation receipt to

the payer by sending him vc. If the payer possesses the pair (SigM ,vc), it is proof that the

payee agreed to cancel the payment. If the payee cancels an already authorised payment,

he can contact the acquirer and arrange for a refund.

The second half of Table B.1 lists the pieces of information that are collected by the

players at the end of a successful protocol run. Again, items within square parentheses

are available only under certain circumstances.

Note that instead of using v and vc, the con�rm and cancel ows from the payee to

payer can be signed by the payee. The use of v and vc avoids the payee having to make

two or more signatures by allowing the original signature to be \extended."

In the actual iKP protocol, the acquirer transfers the money from the customer to

merchant during a \capture" transaction. The merchant can also capture a di�erent

(lower) amount than was previously authorised. The refund transaction is essentially a

negative capture. Depending on the policies of the players, some of the receipts may be

omitted. All these variations are not relevant to our discussion. Therefore they are left

out from our simpli�ed version.

3Parts of the card-holder information is considered \secret" information (e.g., like a credit card num-
ber). The encryption in the order can be opened only by the bank | thus, the payee will not be able to
determine CHI.
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Initial Information

payer desc;price;CHI
payee desc;price;TID;date; v; vc
bank

Collected Information

payer com;H(v);SigM ; [SigA]; v or vc

payee com;Enc;SigC ; [SigA]; [Sig
refund
A ]

bank [com;Enc;CHI;SigM ; [SigrefundM ];SigC ]

Table B.1: Information of Players in a Completed iKP Transaction

Mapping iKP receipts to Dispute Statements

Table B.1 lists the pieces of information known to each player at the end of a successful

transaction. We can now try to extract evidence tokens from these pieces and identify

the dispute claims they can support.

The payer can prove that a payment transaction took place by producing (SigM , v).

However, the payment may have been cancelled later. The payee does not get a receipt

from the payer acknowledging a cancelled payment. However, the cancellation must have

involved the running of a refund protocol with the bank. Thus, an honest payee can

produce (SigrefundA ) to counter the payer's claim. Line 1 of Table B.2 expresses this

scenario. The rest of Table B.2 is an exhaustive list of all the pieces of evidence in iKP

and their mapping to dispute statements.

Notice that all parties have to reveal all the pieces of the common information (\com")

to the veri�er. It is possible that a dispute claim may involve only the \price" attribute.

Nevertheless, the players are forced to reveal the \date" attribute as well. The description

of what the payment is for (\desc"), however need not be revealed because \com" contains

a commitment (in the form of a randomised hash of \desc") of \desc" only. If the dispute

was about the description as well, the commitment can be opened (by revealing the

random factor used in computing the hash). If the same technique was applied to the

rest of the common information, i.e., if it consisted of:

HR(M);HR(C);HR(price);TID;HR(date);HR(desc);H(v);

it would have been possible to reveal only the necessary information to the veri�er. In
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Role Evidence Statement Possible
witness Primitive Transaction Counter

payer 1. SigM ; v; com payee payment 8
2. SigA; yes; com bank value subtraction 10
3. SigA;no; com bank never value subtraction

4. SigM ; vc; com payee never payment 11

payee 5. SigC ; com;Enc payer payment 3, 4, 10
6. SigA; yes; com bank value claim 10
7. SigA;no; com bank never value claim

8. SigrefundA ; com bank never value claim

bank 9. SigM ;SigC ; com payee value claim 8

10. SigrefundM ; com payee never value claim

11. SigC ; com;CHI payer value subtraction 3, 4

Table B.2: Mapping Evidence to Dispute Statements in iKP

general, I recommend supporting the possibility of least disclosure of information as a

principle of good practice in designing disputable protocols.

With the information in Table B.2 and Figure B.1, we can represent the global states

in a run of the iKP payment protocol in the form of a DAG as in Figure B.2. Since

iKP is a cheque-like system, all three primitive transactions are completed at the same

time. The states where the primitive transactions are succesfully completed are marked

with a circle. The states where `never s' is true (s is any basic stmt with any of the

primitive transactions) are marked with a thick broken circle. Notice how the veri�er

can use this graph to implement the analyse method (Section 6.3.1): while `payment

rest of the claim' is false in S300, S400, and S7, the statement `payee could without

payer payment rest of the claim' is true in S300 and S7 (but not in S400).
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