
Blinded Memory
N. Asokan, Secure Systems Group

https://asokan.org/asokan/
@nasokan

(Joint work with Hossam ElAtali, Lachlan J. Gunn, Hans Liljestrand)

https://asokan.org/asokan/

2

This talk in a nutshell

1. Outsourced computing is everywhere…
• Machine learning models kept behind remote APIs

2. …but this introduces security risks…
• Providers don’t expose models/code to clients
• Clients expose sensitive data to providers
• Existing solutions like FHE/TEEs have drawbacks

3. …so we propose a new solution, Blinded Memory
• Attestation + standard encryption + hardware-assisted taint tracking
• Sensitive data not exposed to output devices or covert channels

3

Goal: run the server’s confidential code over client’s confidential data
• Initial target: Outsourced ML inference and/or training

How can the client avoid revealing data to the service provider?
• Fully-Homomorphic Encryption: slow due to computational overhead
• Multi-Party Computation: slow due to network overhead

• Hardware-based isolation + remote attestation: fast

Scenario: outsourced computation

Client Server

Secret Secret
Server sees sensitive data

Result

4

Hardware-assisted TEEs are pervasive

Hardware support for
- Isolated execution: Isolated Execution Environment
- Protected storage: Sealing
- Ability to convince remote verifiers: (Remote) Attestation

Other
Software

Trusted
Software

Protected
Storage

Root of Trust

https://www.ibm.com/security/cryptocards/ https://www.infineon.com/tpm https://software.intel.com/en-us/sgxhttps://www.arm.com/products/security-on-arm/trustzone

Cryptocards Trusted Platform Modules ARM TrustZone Intel Software Guard Extensions

Trusted Execution Environments (TEEs)
Operating in parallel with “rich execution environments” (REEs)

[A+14] “Mobile Trusted Computing”, Proceedings of the IEEE, 102(8) (2014)
[EKA14] “Untapped potential of trusted execution environments”, IEEE S&P Magazine, 12:04 (2014)

https://www.ibm.com/security/cryptocards/
https://www.infineon.com/tpm
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone
https://doi.org/10.1109/JPROC.2014.2332007
https://doi.org/10.1109/MSP.2014.38

5

TEEs as an idea date back to the 1980s

1996 200420031982 2002 2008 2015 2016 20192004

2004 ARM TrustZone
[AF04] “TrustZone: Integrated Hardware and Software Security”,
Information Quarterly (2004)

2003

2003 Texas Instruments OMAP 161x and 73x processors
[H03] “OMAP Platform Security Features ”, Whitepaper (2003, updated 2008)

1982

1982 Texas Instruments, Guttag US4521853A
“Secure microprocessor/microcomputer with secured memory”

1982 Texas Instruments, Guttag and Nussarallah US4521853A
“Security bit for designating the security status of information stored in a nonvolatile memory”

1996

1996 Intertrust, Ginter et al US 5892900A
“Systems And Methods For Secure Transaction Management And Electronic Rights Protection”

2002 Nokia, Kiiveri and Paatero US9111097B2
“Secure execution architecture”

2002

https://www.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
https://www.ti.com/pdfs/wtbu/omapplatformsecuritywp.pdf
https://patents.google.com/patent/US4521853A/
https://patents.google.com/patent/US4590552A/
https://patents.google.com/patent/US5892900A/en
https://patents.google.com/patent/US9111097B2/

6

Deployment of mobile TEEs date back to the 2000s

First deployment: Nokia 6630 (“Charlie”)
• first 3G phone with TI OMAP 1710 processor (June 2004)

ARM TrustZone currently widely deployed
• TrustZone-M for Cortex-M class microcontrollers (2016)

Ca. 2008, TEE unheard of in academic circles
• first papers in FC 2008, ASIACCS 2009

[AE08] A Platform for OnBoard Credentials, Financial Cryptography and Data Security (2008)
[KEAR09] On-board credentials with open provisioning, ACM ASIACCS (2009)

Intel SGX
• SkyLake (2015); wide availability of SDK “democratized” TEE research

1996 200420031982 2002 2008 2015 2016 20192004 2008 2015 2016

https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://link.springer.com/chapter/10.1007/978-3-540-85230-8_31
https://dl.acm.org/citation.cfm?id=1533074

7

More on the history of TEEs

CCS 2019 keynote[1] https://youtu.be/hHYoGn5PSl4

2022 book https://ssg.aalto.fi/publications/hardware-platform-security-for-mobile-devices/

[A20] “Hardware-assisted Trusted Execution Environments: Look Back, Look Ahead”, ACM CCS Keynote (2019)
[GAE+22] “Hardware Platform Security for Mobile Devices”, Foundations and Trends® in Privacy and Security 3(3-4):214-394, NOW publishers (2022)

https://youtu.be/hHYoGn5PSl4
https://ssg.aalto.fi/publications/hardware-platform-security-for-mobile-devices/
https://doi.org/10.1145/3319535.3364969
http://dx.doi.org/10.1561/3300000024

8

Protection provided by TEEs comes with caveats

TEEs provide an isolated environment for execution of software

TEEs are unsuitable when server code is confidential or unverfiable
• TEEs intended for clients to run code they trust and can verify

Confidentiality of client data in TEEs is hampered by:
• Large TEE code base → vulnerable to software flaws
• Sharing resources → vulnerable to side channels

9

Is Confidentiality vs. Performance a tradeoff?
High

performance
Low

performance
Low

confidentiality

High
confidentiality

+ current TEEs

Vanilla outsourced
computing

Fully-Homomorphic
Encryption Our goal

10

What can be done?

1. Prevent application software from leaking sensitive data
• Use hardware-assisted taint-tracking
• Need not verify trustworthiness of application s/w

2. Minimize resource sharing
• Move critical operations to a fixed-function, isolated processor (HSM)
• All HSM code analyzed in advance, guaranteed not to be malicious

11

Prevent leakage of sensitive data via CPU extensions

“Safe” streams of instructions don’t expose sensitive data

Allowed:
• Computation on sensitive data by arbitrary, unattested, untrusted software

Prohibited:
• Leaking sensitive data into any observable state, e.g.: peripherals outside

security boundary, microarchitectural state

Use taint-tracking-based security policy to limit sensitive data to safe places

12

Combine with attestable HSM to assure clients

Remote attestation assures use of client data is subject to security policy

Client

Server
CPU extensions +

fixed-function HSM
Application

S/W

Blinded

13

Taint tracking policy
Registers/memory have an associated “sensitive” bit (“Blinded“)
Ideal rule:

Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)
Goal: changes in sensitive state never affect non-sensitive state

(formally verified)

instn out A, in B, in A

instn out A

Register A

Register B Blinded = 1

Blinded = 1

jmp in B PC Cannot become blinded

14

Thinking beyond registers and memory

Taint-propagation rule must consider many different observable outputs
• Registers
• Memory values
• Memory access patterns
• Control flow
• Exceptions

Not all of these outputs can be marked as sensitive

Data flows from sensitive values to “un-markable” outputs must yield a fault

15

How to deal with exceptions

Examples of data-dependent exceptions:
• Division by zero
• Floating-point exceptions
• …

Instructions must not raise an exception based on data-dependent conditions

Solutions:
• Unconditional faults (i.e., division by sensitive values always fails)
• Set a sensitive error flag and continue computation

16

BliMe Architecture

1. Handshake (incl. remote attestation)
2. Shared secret key
3. Atomic data import (inputs)

• Decrypt & blind (Blinded ← true)
4. Safe (“blinded”) computation

• Enforced by BliMe HW extensions
5. Atomic data export (result)

• Encrypt & unblind (Blinded ← false)
Fixed-function

HSM

CPU with our
extensions

HSM

Blinded

Server

17

BliMe-BOOM Implementation

On speculative OoO RISC-V core BOOM

Tagged memory: each byte can be marked as blinded
Instructions to mark physical memory as

• Blinded or non-Blinded

Implements taint-tracking for all instructions
• Ideal rule: Blinded(outputm) ← ∃n,m: Blinded(inputₙ) ∧ Depends(outputm on inputₙ)

Approx. to: Blinded(outputs) ← Blinded(input₁) ∨ Blinded(input₂) ∨ …

Approximation can be overridden for specific instructions

instr

19

Encryption Engine

Encryption engine uses the RoCC accelerator interface in BOOM
• RoCC exposes custom logic as instructions

Instructions

Sealing key

Session
key

Memory

Sealed key
Encrypted data

Keystream
Generator

Authenticator

Blinded data
Encrypted data

Control logic

20

Handling multiple clients simultaneously

Problem: So far, one Blinded bit for many clients
• Server can send sensitive data to the wrong client

We need a separate sensitivity domain for each client
• Prevent clients accessing each other’s sensitive data
• Keys need to be swapped in and out for each client

21

Handling multiple clients simultaneously

Solution 1: BliMe-BOOM-1 + Isolation by honest-but-curious server OS
• OS keeps track of sensitivity domains
• Requires only single Blinded bit from HW: low memory overhead
• Rely on remote attestation of the entire OS to convince client

Solution 2: BliMe-BOOM-N -- Hardware support for multiple clients
• Hardware keeps track of sensitivity domains: multibit Blindedness tag
• Secure despite malicious OS
• Needs extra memory/logic to keep track of domain identifier for each granule

22

BliMe-BOOM-N Implementation

BOOM RTL

Data tagged with client-specific tag

1 tag per granule

Tag size = 8 bits, granule size = 8 bytes

Future work:
• parameterize tag size and granule size

Granule 0

Tag A

Tag B

Granule 1

24

Evaluation

Compatibility: Tested with side-channel-resistant crypto library (TweetNaCl)
• Side-channel-resistant crypto runs without modifications

Overheads

Type BOOM-1 BOOM-8
LUTs & Registers +4.0% +9.0%

Power +0.9% +1.4%
Max clock frequency No reduction No reduction

FPGA Performance: SPEC2017

BOOM-1 BOOM-8
+23% +23%

25

BliMe-gem5 optimization

BliMe-BOOM uses same memory request size for data and tags

Using correct request size (1/8th) needs extensive changes to baseline

Solution: Use gem5 simulator to perform evaluation with correct size
• BliMe-gem5-optimized

Could ∆ in performance just be caused by moving to gem5?
• Implement BliMe-gem5 with BliMe-BOOM configs
• BliMe-gem5 matches BliMe-BOOM in average performance (SPEC 2017)

26

Evaluation

Compatibility: Tested with side-channel-resistant crypto library (TweetNaCl)
• Side-channel-resistant crypto runs without modifications

Overheads

Performance: 8% average overhead on gem5 after optimization

Type BOOM-1 BOOM-8
LUTs & Registers +4.0% +9.0%

Power +0.9% +1.4%
Max clock frequency No reduction No reduction

FPGA Performance: SPEC2017

BOOM-1 BOOM-8
+23% +23%

gem5 gem5-opt.
+25% +8%

27

Security: Formal verification in F*

Goal: changes in blinded state never affect non-blinded state

(***
* Equivalence-based safety.
*
* We define safety in this case to be that the system is safe if executing on
* equivalent (and so indistinguishable) states always results in equivalent
* output states.
***)
let equivalent_inputs_yield_equivalent_states (exec:execution_unit) (pre1 pre2 : systemState) =

equiv_system pre1 pre2 ⇒ equiv_system (step exec pre1) (step exec pre2)

let is_safe (exec:execution_unit) =
∀ (pre1 pre2 : systemState). equivalent_inputs_yield_equivalent_states exec pre1 pre2

https://blinded-computation.github.io/blime-model/

https://blinded-computation.github.io/blime-model/

30

Generating compliant code with LLVM

Problem: software might not run as-is
• BliMe hardware extensions will abort non-compliant code

Creating compliant code by hand is error prone
• High-level verification often insufficient
• Challenge exacerbated due to obtuse compiler behavior
• Usability/deployability challenge, not security

Challenge: solutions like Constantine[B+21] are not applicable as-is
• Uses dynamic profiling; under-approximates taint (best-effort approach)

[B+21] "Constantine: Automatic Side-Channel Resistance Using Efficient Control and Data Flow Linearization”, ACM CCS (2021)

TensorFlow Lite hand-
ported to run on BliMe

https://doi.org/10.1145/3460120.3484583

31

Generating compliant code with LLVM: our solution

Solution: Use static analysis to propagate taint
• Trade-off: over-approximation

Use SVF[S+16] as a starting point

SVF provides static value-flow graph
• Shows value dependencies within program

Identify and transform potential violations
• Apply data- and control-flow linearization

[S+16] "SVF: interprocedural static value-flow analysis in LLVM”, ACM International Conference on Compiler Construction (2016)

https://doi.org/10.1145/2892208.2892235

32

Adapting TensorFlow Lite to BliMe

Compiled image classification example

Some manual fixes required in TensorFlow Lite library source code
• e.g., array access expansion for softmax lookup table

In progress:
• For TensorFlow Lite: try more example models
• For the compiler

• Ensure soundness
• Produce warnings for untransformed libraries

33

In Progress: BliMeNG

HW accelerators common in outsourced
computation

• Customized to application

ML accelerators useful for all ML workloads

Goal: Adapt BliMe to ML accelerator framework

Prominent open-source frameworks:
• NVDLA (by NVIDIA)
• Gemmini (by BOOM team)

34

In progress: summary

Compiler support: improving usability/deployability

Hardware improvements:
Implementing tag cache
Adapting BliMe to Gemmini accelerator

Evaluation: Experimenting with more TensorFlow models on BliMe

35

Summary

BliMe provides FHE-style security, but efficiently

Server can safely run untrusted code on sensitive data

Incorporated into speculative OoO RISC-V core BOOM

In progress: compiler support, tag cache, TensorFlow, Gemmini

Paper, source code etc. at https://ssg-research.github.io/blime/

[EGHA24] “BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking”, To appear in NDSS 2024 (also arXiv:2204.09649)

https://ssg-research.github.io/blime/
https://arxiv.org/abs/2204.09649
https://arxiv.org/abs/2204.09649

36

Summary

BliMe provides FHE-style security, but efficiently

Server can safely run untrusted code on sensitive data

Incorporated into speculative OoO RISC-V core BOOM

In progress: compiler support, tag cache, TensorFlow, Gemmini

Paper, source code etc. at https://ssg-research.github.io/blime/

If this type of work interests you, come work with us!
https://asokan.org/asokan/research/SecureSystems-open-positions-Jul2021.php

[EGHA24] “BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking”, To appear in NDSS 2024 (also arXiv:2204.09649)

https://ssg-research.github.io/blime/
https://asokan.org/asokan/research/SecureSystems-open-positions-Jul2021.php
https://arxiv.org/abs/2204.09649
https://arxiv.org/abs/2204.09649

37

	Blinded Memory
	This talk in a nutshell
	Scenario: outsourced computation
	Hardware-assisted TEEs are pervasive
	TEEs as an idea date back to the 1980s
	Deployment of mobile TEEs date back to the 2000s
	More on the history of TEEs
	Protection provided by TEEs comes with caveats
	Is Confidentiality vs. Performance a tradeoff?
	What can be done?
	Prevent leakage of sensitive data via CPU extensions
	Combine with attestable HSM to assure clients
	Taint tracking policy
	Thinking beyond registers and memory
	How to deal with exceptions
	BliMe Architecture
	BliMe-BOOM Implementation
	Encryption Engine
	Handling multiple clients simultaneously
	Handling multiple clients simultaneously
	BliMe-BOOM-N Implementation
	Evaluation
	BliMe-gem5 optimization
	Evaluation
	Security: Formal verification in F*
	Generating compliant code with LLVM
	Generating compliant code with LLVM: our solution
	Adapting TensorFlow Lite to BliMe
	In Progress: BliMeNG
	In progress: summary
	Summary
	Summary
	Slide Number 37

