Man-in-the-middle in Tunnelled Authentication

Cambridge Security Protocols Workshop, April 2003

N. Asokan, Kaisa Nyberg, Valtteri Niemi Nokia Research Center

A tale of two protocols

- In the beginning..
 - an authentication method is designed and deployed for some need
 - user credentials are provisioned, at great expense
- ..then a framework protocol is developed;
 - to transparently support multiple authentication methods
 - authentication methods are plugged in to the framework
- .. new applications arise; framework doesn't quite do the job
 - missing bits: session keys, mutual authentication, identity privacy
 - designing a new protocol is not a desirable option
 - provisioning new credentials is even less desirable

> Use it with another protocol that provides missing features

AKA and EAP/AKA: example authentication protocol

AKA: authentication and key agreement protocol for 3GPP
 mutual authentication, session key derivation

- EAP: an authentication framework
 - supports multiple authentication mechanisms
- EAP/AKA: plugging AKA into EAP
 allows WLAN access authentication using cellular credentials

PEAP: example of tunnelled authentication

Tunnelled authentication

The same tale in different guises

- PIC ISAKMP and EAP: provisioning credentials based on legacy authentication
- IKEv2 Secure Legacy Authentication
- PANA over TLS: Authentication for Network Access
- HTTP Digest Authentication and TLS

PEAP with EAP/AKA

MitM against PEAP+EAP/AKA

Conditions for failure

- Same credential used in both tunnelled & untunnelled modes
- 2. Tunnelling protocol does not perform mutual authentication
- 3. Keys from authentication protocol not used for subsequent protection

Fixing the problem

- 1. Enforcing that same credential is not used in both modes
 - maybe feasible in some cases
 - not exactly "legacy authentication" anymore
 - server authentication brings in new problems
 - unnecessary restriction on strong authentication methods
- 2. Require mutual authentication in tunnelling protocol
 - if that is possible, no need for tunnelling in the first place
- 3. Cryptographically bind tunnelling and authentication protocol
 - binding can be explicit or implicit
 - requires authentication protocol to provide a key to be used in binding
 - requires changes to tunnelling protocol or framework
 - does not improve the security of weak authentication protocols

Current status

- Some authors of tunnel proposals informed in October 2002
- General agreement that this is indeed a problem
 - opinions differ on what the solution should be
- Subsequent changes to several proposals to reduce the impact of the problem
 - EAP/AKA (v-05)
 - PEAP (v-06)
 - IKEv2 (v-05)
 - PANA over TLS (v-01) \rightarrow PANA (v-00)
 - EAP SIM GMM \rightarrow EAP binding

• ...

Are there any lessons here?

- This is all obvious, at least in hindsight
- So why did it happen?
 - re-use of credentials is unavoidable in practice
 - re-use of protocols is also unavoidable in practice
 - framework equalizes all authentication methods
 - mutual authentication, key agreement etc. not visible
 - tools for/knowledge of protocol validation not accessible to designers

