
Common-sense applications
of hardware-based TEEs
N. Asokan

http://asokan.org/asokan/
@nasokan

Acknowledgements: Thomas Nyman, Lachlan Gunn

Hardware-security mechanisms are pervasive

Hardware support for
- Isolated execution: Isolated Execution Environment
- Protected storage: Sealing
- Ability to convince remote verifiers: Remote Attestation

3

Other
Software

Trusted
Software

Protected
Storage

Root of Trust

https://www.ibm.com/security/cryptocards/ https://www.infineon.com/tpm https://software.intel.com/en-us/sgxhttps://www.arm.com/products/security-on-arm/trustzone

Cryptocards Trusted Platform Modules ARM TrustZone Intel Software Guard Extensions

Trusted Execuction Environments (TEEs)
Operating in parallel with “rich execution environments” (REEs)

[A+14] “Mobile Trusted Computing”, Proceedings of the IEEE, 102(8) (2014)
[EKA14] “Untapped potential of trusted execution environments”, IEEE S&P Magazine, 12:04 (2014)

https://www.ibm.com/security/cryptocards/
https://www.infineon.com/tpm
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone
https://doi.org/10.1109/JPROC.2014.2332007
https://doi.org/10.1109/MSP.2014.38

Concerns with TEEs: flaws

4

http://www.cs.dartmouth.edu/~pkilab/sparks/ (2007)

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang (2017)

https://en.wikipedia.org/wiki/Foreshadow_(security_vulnerability) (2018)

http://www.cs.dartmouth.edu/%7Epkilab/sparks/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://en.wikipedia.org/wiki/Foreshadow_(security_vulnerability)

Concerns with TEEs: suspicions of motives

6

https://www.eff.org/wp/trusted-computing-promise-and-risk (2003)

https://www.theregister.co.uk/2002/06/28/ms_palladium_protects_it_vendors/ (2002)

http://theinvisiblethings.blogspot.fi/2013/09/thoughts-on-intels-upcoming-software.html (2013)

https://www.eff.org/wp/trusted-computing-promise-and-risk
https://www.theregister.co.uk/2002/06/28/ms_palladium_protects_it_vendors/
http://theinvisiblethings.blogspot.fi/2013/09/thoughts-on-intels-upcoming-software.html

Possible motivations for widespread deployment

Vendor lock-in

Restriction of digital rights

…

Regulatory requirements

Protection of end-user data

…

7

Example: regulatory compliance

8

Early TEEs for mobile phones
(ca. 2001)

Secure storage of RF
configuration parameters

3GPP TS 42.009, 2001

[Saara Matala] “Historical insight into the development of Mobile TEEs”, Aalto SSG research group blog (2019)

http://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html

Mobile TEEs: Motivation

 New approach: “processor secure environments”

Generic low-cost enabler emerged as skunkworks project within Nokia
(rather than point solutions for particular use cases)

9

Business requirements:
• mobile payment
• subsidy lock
• custom silicon consolidation

Regulatory requirements:

• tamper-resistant IMEIs
• secure storage for RF

Supply-chain constraints:

Cost of discrete security chip
too high on bill of materials!

Mobile TEEs: Development

10

1996 200420031982 2002 2008 2015 2016 20192004

2004 ARM TrustZone Tiago Alves and Don Felton
“TrustZone: Integrated Hardware and Software Security“,
Information Quarterly, 2004:3(4)

2003

2003 Texas Instruments OMAP 161x and 73x processors
Harini Sundaresan, "OMAP Platform Security Features“ whitepaper, 2003 (updated 2008)

1982

1982 Texas Instruments, Guttag US4521853A
“Secure microprocessor/microcomputer with secured memory”

1982 Texas Instruments, Guttag and Nussarallah US4521853A
“Security bit for designating the security status of information stored in a nonvolatile memory”

1996

1996 Intertrust, Ginter et al US 5892900A
“Systems And Methods For Secure Transaction Management And Electronic Rights Protection”

2002 Nokia, Kiiveri and Paatero US9111097B2
“Secure execution architecture”

2002

https://www.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
https://patents.google.com/patent/US4521853A/
https://patents.google.com/patent/US4590552A/
https://patents.google.com/patent/US5892900A/en
https://patents.google.com/patent/US9111097B2/

Mobile TEEs: Deployment

• First deployment: Nokia 6630 (“Charlie”)
• first 3G phone with TI OMAP 1710 processor (June 2004)

• ARM TrustZone currently widely deployed
• TrustZone-M for Cortex-M class microcontrollers (2016)

• Ca. 2008, TEE unheard of academic circles
• first paper in FC 2008, ASIACCS 2009

• Intel SGX
• SkyLake microarchitecture (2015)
• wide availability of SDK “democratized” TEE research 11

1996 200420031982 2002 2008 2015 2016 20192004 2008 2015 2016

Should we build systems that rely on TEEs?

Concerns with applicability of hardware-supported TEEs remain

But compelling common-sense applications exist
practical; protect end-users; address everyday needs
• Private membership test for malware scanning, private contact discovery,..

[TLPEPA17] Circle Game, ACM ASIACCS https://arxiv.org/abs/1606.01655

• Protection of password-based web authentication
[KKPMA18] SafeKeeper, WWW (WebConf) https://ssg.aalto.fi/research/projects/passwords/

• Secure accounting for function-as-a-service (FaaS) settings
[AAKPS18], S-FaaS, in submission, https://export.arxiv.org/abs/1810.06080

• Blockchains and cryptocurrencies
[LLKA19] FastBFT, IEEE TC https://doi.org/10.1109/TC.2018.2860009, [GLVA19] SACZyzzyva, SRDS, http://arxiv.org/abs/1905.10255

• …

12

https://arxiv.org/abs/1606.01655
https://ssg.aalto.fi/research/projects/passwords/
https://export.arxiv.org/abs/1810.06080
https://doi.org/10.1109/TC.2018.2860009
http://arxiv.org/abs/1905.10255

Can blockchains be made better
using hardware-assisted security?
Lachlan J. Gunn, N. Asokan

Proof of Work + “longest chain” rule
Bitcoin, Ethereum, etc. all use Proof of Work to agree on the next block:

Miners decide which transactions include in their proposal for the next block
Proof of Work: use computation power to solve a puzzle; winner proposes next block

• Chance of success proportional to amount of computation (work) performed
• Fair: any miner expending the same amount of work has the same chance of winning

• Everyone follows the longest valid chain (chain with largest CPU power wins eventually)

17

Miner 1

Miner 2

Miner 3

What’s wrong with Bitcoin, anyway?

The luxury of not trusting anyone does not come for free:

All transactions need to be online
Slow: long confirmation time, low throughput

Wasteful (energy expended on puzzle solving)
Probabilistic finality
Extremely scalable

18

Fi
nl

an
d

Be
lg

iu
m

Ve
ne

zu
el

a

Bi
tc

oi
n

Au
st

ria

Vi
sa

ET
H

Annual Power
Consumption

Ph
ili

pp
in

es

Data: Digiconomist, CIA World Factbook

Outline

Can hardware-assisted security improve blockchains?
Example approaches
• Changing the “business process”
• Replacing consensus (“longest chain” rule)
• …

What challenges arise?

19

Changing the process

Proof of Elapsed Time

Proof of Work:
First miner to solve puzzle wins (gets to proposes next block)

Work ~ Exp (difficulty)

Proposals can be made at a rate proportional to computational power

Proof of Elapsed Time:
TEE issues attestation after waiting (idly) for a while; First miner to get the attestation wins

Idle wait time ~ Exp (difficulty)

Proposals can be made at a rate proportional to the number of idle CPUs

Intel, Hyperledger Sawtooth Documentation, 2015
23

WastefulEfficientSkip to TEE compromise

https://www.hyperledger.org/projects/sawtooth

Replacing Consensus

Byzantine Consensus
Goals of classical Consensus schemes:
• Liveness: all (honest) nodes produce output
• Safety: all (honest) nodes output same value
• Finality: output values are definitive

Adversary model:
• Adversary can compromise some nodes
• Goals hold despite f compromised nodes

Limits:
• No protocol can tolerate more than a third

of nodes being compromised

25

0 0

0 01

Slow
Probabilistic

Wasteful

PBFT

26

The first practical protocol for Byzantine fault tolerance

Castro & Liskov, “Practical Byzantine Fault Tolerance”, OSDI’99

O(n2) messages, n = 3f + 1

Less scalable than Proof of Work.

Fast

Efficient
Deterministic

Scalable

http://pmg.csail.mit.edu/papers/osdi99.pdf

The landscape of consensus mechanisms

Adapted from Marko Vukolić, "The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication"
International Workshop on Open Problems in Network Security. Springer International Publishing, 2015

th
ro

ug
hp

ut

PBFT

Can TEEs bring
us out here?

Fast
Deterministic

Efficient
Scalable

http://link.springer.com/chapter/10.1007/978-3-319-39028-4_9

How can TEEs help design scalable consensus?

Problem: Compromised nodes can equivocate

Solution: Use attestation to prevent equivocation!
• Tolerate faults in ½ of the nodes

Applicability limited to permissioned settings

Chun et al., “Attested append-only memory: making adversaries stick to their word”, SOSP ‘07

28

Detected!

https://doi.org/10.1145/1294261.1294280

MinBFT

29

Hardware-based monotonic counters
→ increase fault-tolerance

Veronese et al., "Efficient Byzantine fault-tolerance." IEEE Trans. Computers 62.1 (2013): 16–30

O(n2) messages, n = 2f + 1

PBFT

https://doi.org/10.1109/TC.2011.221

FastBFT

30

TEE-protected secret sharing, message aggregation
→ increase throughput

[LLKA18] “Scalable Byzantine Consensus via Hardware-assisted Secret Sharing”, IEEE Trans. Computers (2018)

O(n) messages, n = 2f + 1

PBFT

MinBFT

https://doi.org/10.1109/TC.2018.2860009

Challenges

Challenges in relying on hardware-assistance

TEE Availability:
• TEEs will not be universally available:

• Gradual rollout
• Obsolescence
• Revocation

TEE Compromise:
• Compromising some TEEs should not

completely break the system

32

TEE unavailable

Skip to TEE compromise

Example: Dealing with TEE availability in consensus

Question: Can we improve consensus
protocols by adding only a few TEEs?

Answer*:
• can increase throughput if

#TEEs > 1
• but fault tolerance cannot be increased if

(#TEEs / #Nodes) ≤ 2/3

Open question: (How) can we optimally
increase fault tolerance when

2/3 < (#TEEs / #Nodes) < 1

* [GLVA19] SACZyzzyva, SRDS, http://arxiv.org/abs/1905.10255

New protocols may
be able to improve
fault tolerance

What can we
achieve here?

of Nodes

of TEEs

No TEEs: PBFT, etc.

0 to 2/3 with TEEs:
SACZyzzyva, etc. can
improve performance (only).

http://arxiv.org/abs/1905.10255

Example: Dealing with TEE compromise in PoET
Problem: A compromised TEE can win every block

Statistical solution: refuse blocks from machines that
have won too many times

• Before: compromised TEEs give attacker unlimited power
• After: attacker power proportional to # of compromised TEEs

“Design for Failure”

Open question: How can TEE-using applications
detect/mitigate effects of TEE-compromise?

Intel, Hyperledger Sawtooth Documentation (2015).
Chen et al., “On Security Analysis of Proof-of-Elapsed-Time (PoET)”, SSS 2017. 34

https://www.hyperledger.org/projects/sawtooth
https://doi.org/10.1007/978-3-319-69084-1_19

Summary

Concerns with applicability of hardware-supported TEEs remain

But compelling common-sense applications exist
be practical; protect end-users; address everyday needs

Solutions must incorporate mitigations for:
TEE unavailability or compromise

Design for failure
application- or system-level mitigations possible

36http://www.icri-cars.org/

https://ssg.aalto.fi/research/projects/bcon/
BCon project, Academy of Finland

ICRI-CARS, Intel

https://ssg.aalto.fi/research/projects/bcon/
https://ssg.aalto.fi/research/projects/bcon/
http://www.icri-cars.org/
http://www.icri-cars.org/
http://www.icri-cars.org/
https://ssg.aalto.fi/research/projects/bcon/

On dealing with TEE compromise

Two types of settings where TEEs are useful:
1. Improving functionality without compromising security: e.g., PoET
2. Improving security (esp. where none exists today): e.g., SafeKeeper

TEE compromise is a major concern in Type 1 settings

In Type 2 settings, TEE compromise implies returning to current situation

37

	Common-sense applications of hardware-based TEEs
	Hardware-security mechanisms are pervasive
	Concerns with TEEs: flaws
	Concerns with TEEs: suspicions of motives
	Possible motivations for widespread deployment
	Example: regulatory compliance
	Mobile TEEs: Motivation
	Mobile TEEs: Development
	Mobile TEEs: Deployment
	Should we build systems that rely on TEEs?
	Can blockchains be made better using hardware-assisted security?
	Proof of Work + “longest chain” rule
	What’s wrong with Bitcoin, anyway?
	Outline
	Changing the process
	Proof of Elapsed Time
	Replacing Consensus
	Byzantine Consensus
	PBFT
	The landscape of consensus mechanisms
	How can TEEs help design scalable consensus?
	MinBFT
	FastBFT
	Challenges
	Challenges in relying on hardware-assistance
	Example: Dealing with TEE availability in consensus
	Example: Dealing with TEE compromise in PoET
	Summary
	On dealing with TEE compromise

