Fast client-side phishing detection

A case-study in applying machine learning to solve security/privacy problems

N. Asokan
(joint work with Samuel Marchal, Giovanni Armano, Kalle Saari, Tommi Gröndahl, Nidhi Singh, Mika Juuti)
Outline

Off-the-Hook: a client-side phishing detection technique

Lessons learned

• Pitfalls in applying machine learning to security/privacy problems
• Ways of avoiding pitfalls
• (From the perspective of system security experts)
Phishing webpages

Phishing webpage (phish)

Legitimate webpage
State of the art in phishing detection

Centralized black lists
• vulnerability to “dynamic phishing”: content depends on client
• Update time lag
• threat to user privacy

Application of machine learning
• may not have “temporal resilience”: accuracy degrading with time
Data sources on a webpage

Starting URL
Landing URL
Redirection chain
Logged links
HTML source code:
 • Text
 • Title
 • HREF links
 • Copyright
Phisher’s control & constraints

Data sources differ in terms of the levels of

• control the phisher has over a source
• constraints placed on the phisher in manipulating that source
URL Structure

https://www.amazon.co.uk/ap/signin?_encoding=UTF8

- Protocol = https
- Registered domain name (RDN) = amazon.co.uk
- Main level domain (mld) = amazon
- FreeURL = {www, /ap/signin?_encoding=UTF8}
Phisher’s control & constraints

Control:

• **External** loaded content (logged links) and **external** HREF links are *usually not controlled* by page owner.

Constraints:

• **Registered domain name** part of URL cannot be freely defined: *constrained* by DNS registration policies.
Conjectures

Improve phish detection by modeling control/constraints
 • generalizable, language independent, hard to circumvent

Identity target of phish by analyzing terms in data sources
 • guide users where they really intended to go
Data sources: control & constraints

<table>
<thead>
<tr>
<th></th>
<th>Unconstrained</th>
<th>Constrained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled</td>
<td>Text, Title, Copyright, Internal FreeURL (2)</td>
<td>Internal RDNs (2)</td>
</tr>
<tr>
<td>Uncontrolled</td>
<td>External FreeURL (2)</td>
<td>External RDNs (2)</td>
</tr>
</tbody>
</table>
Feature selection

A small set (212) of features computed from data sources:

- URL features (106): e.g., # of dots in FreeURL
- Consistency features (101)
- Webpage content (5): e.g., # of characters in Text

Features not data-driven: e.g., no bag-of-words features

- Conjecture: can lead to language-independence, temporal resilience
Consistency features

Term usage (66)
- strings of 3 or more characters, separated by standard delimiters

“Main level domain” \((mld)\) usage in starting/landing URLs (22)

“Registered domain name” usage \((RDN)\) (13)
Title: “Log in to your PayPal account”

\[D_{\text{title}} = \{(\text{log}, 0.25); (\text{your}, 0.25); (\text{paypal}, 0.25); (\text{account}, 0.25)\} \]

\[D_{\text{startrdn}} = \{(\text{paypal}, 1)\} \]

Hellinger distance

\[f = H(D_{\text{title}}, D_{\text{startrdn}}) = \sqrt{0.25 + 0.25 + (\sqrt{0.25} - \sqrt{1})^2 + 0.25} \]

\[= 0.71 \]
Classification

Decision trees:
• Easier understanding of the decision process (intelligibility)
• Ability to learn from little training data
• Good performance with a small feature set
• No need for data normalization

Gradient Boosting (ensemble learning):
• Resilient to adversarial inference of model parameters
• Likelihood to belong to a class (score from individual learners) // no hard decision (good for tuning the decision)
Target identification

Identify terms representing the service/brand: keyterms
Assumption: keyterms appear in several data sources

Intersect sets of terms extracted from different visible data sources (title, text, starting/landing URL, Copyright, HREF links)

Query search engine with top keyterms:
• Website appears in top search results → legitimate
• Else, phishing; top search results ~ potential targets of phishing
Off-the-Hook anti-phishing system

1. Start with the landing URL.
2. Check if the URL is in the whitelist (WL).
 - If yes, go to the legitimate path with a green icon.
 - If no, proceed to the next step.
3. Check if the URL is a phishing attempt.
 - If yes, go to the phishing path with a red icon and warning message.
 - If no, proceed to the next step.
4. Check if the target matches.
 - If yes, display a loading screen.
 - If no, go back to step 2.\n5. End with the legitimate path with a green icon or a green icon plus safe toast notification.
Off-the-Hook browser add-on

Client-side implementation
• Preserves user privacy
• Resists dynamic phishing

Multi-browser / Cross platform
• Chrome*, Firefox
• Windows (>= 8), Mac OS X (>= 10.8), Ubuntu (>= 12.04)
Off-the-Hook warning
Evaluation

Classifier Training:
- 8,500 legitimate webpages (English)
- 1,500 phishing webpages (taken from PhishTank & manually verified)

Evaluation:
- Legitimate webpages:
 - 100,000 English
 - 20,000 each in French, German, Italian, Portuguese and Spanish
- 2,000 phishing webpages (PhishTank; manually verified)
Classification accuracy

200,000 multi-lingual legit / 2,000 phishs
(≈ real world distribution)

<table>
<thead>
<tr>
<th>Precision</th>
<th>Recall</th>
<th>FP Rate</th>
<th>AUC</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.975</td>
<td>0.951</td>
<td>0.0008</td>
<td>0.999</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Classification accuracy over time

Model trained:
• September 2015

Applied on phishs:
• January – June 2016
• ~2500 fresh, verified phishtank entries
Performance

Small memory footprint: 295 MB

Minimal impact on web surfing

• Phishing webpages:
 - Interaction blocked in < 0.2 second
 - Warning displayed (and target identified) in < 2 seconds

• Legitimate webpages:
 - No perceptible impact (albeit false positives)
Comparison: effectiveness

<table>
<thead>
<tr>
<th>Method</th>
<th>FPR</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantina (CMU)</td>
<td>0.03</td>
<td>0.212</td>
<td>0.89</td>
<td>0.969</td>
</tr>
<tr>
<td>Cantina+ (CMU)</td>
<td>0.013</td>
<td>0.964</td>
<td>0.955</td>
<td>0.97</td>
</tr>
<tr>
<td>Ma et al. (UCSD)</td>
<td>0.001</td>
<td>0.998</td>
<td>0.924</td>
<td>0.955</td>
</tr>
<tr>
<td>Whittaker et al. (Google)</td>
<td>0.0001</td>
<td>0.989</td>
<td>0.915</td>
<td>0.999</td>
</tr>
<tr>
<td>Monarch (UCB)</td>
<td>0.003</td>
<td>0.961</td>
<td>0.734</td>
<td>0.866</td>
</tr>
<tr>
<td>Off-the-Hook</td>
<td>0.0008</td>
<td>0.975</td>
<td>0.951</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Comparison: dataset sizes

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantina (CMU)</td>
<td>-</td>
<td>2,119</td>
</tr>
<tr>
<td>Cantina+ (CMU)</td>
<td>2062</td>
<td>884</td>
</tr>
<tr>
<td>Ma et al. (UCSD)</td>
<td>17,750</td>
<td>17,750</td>
</tr>
<tr>
<td>Whittaker et al. (Google)</td>
<td>9,388,395</td>
<td>1,516,076</td>
</tr>
<tr>
<td>Monarch (UCB)</td>
<td>750,000</td>
<td>250,000</td>
</tr>
<tr>
<td>Off-the-Hook</td>
<td>10,000</td>
<td>202,000</td>
</tr>
</tbody>
</table>
Off-the-Hook summary

Off-the-Hook phishing website detection system:
• Exhibits language independence
• Resists dynamic phishing
• Fast: < 0.5 second per webpage (average for all webpages)
• Accurate: > 99.9% accuracy with < 0.1% false positives

Target identification system:
• Fast: < 2 seconds per webpage
• Success rate: > 90% (1 target); 97.3% (set of three potential targets)

Pitfalls in using ML for security
Adversaries will circumvent detection

The ML model is intended to detect/counter attacks
Adversary will attempt to circumvent detection:
 • poison learning process
 • infer detection model
 • mislead classifier

In Off-the-Hook:
 • Modeling constraints and controls while training
 • Adversary can control External RDNs!

Resistance to adversaries
Classification landscapes are dynamic

Attacks evolve fast

Prediction instances likely differ from training instances
 • E.g., Android malware evolves due to changes in API

In Off-the-Hook:
 • Avoidance of data-driven features
 • Models that allow inexpensive retraining

Temporal resilience
Maintaining labels is expensive

More training data is good; but unbalanced classes typical

Data about malicious behavior difficult to obtain
- Labeling is cumbersome, requires expertise, may be inaccurate or may evolve (e.g. phishing URLs)

In Off-the-Hook:
- Manage with small training sets
- Minimize ratio of training set size to test size

Minimal training data
Privacy concerns are multilateral

Data used for ML may be sensitive

- Sensitive information about users in training data → model inversion, membership inference
- Prediction process → user profiling, e.g., in a cloud setting (ML-as-a-service)

In Off-the-Hook:

- Client-side classifier to avoid disclosure of URLs
- But model stealing may be a concern

→ Multilateral privacy guarantees
Predictions need to be intelligible

Ability of humans to understand why a prediction occurs

• Detection as malicious → forensic analysis
• Explain predictions to users, e.g. why access is prevented
• “Explainability” obligations under privacy regulations like GDPR

In Off-the-Hook:

• Small set of “meaningful” features
• Use of (ensemble of) shallow decision trees

Transparent decision process
ML failures can harm user experience

Security is usually a secondary goal
Use of ML must not negatively impact usability
 • Decision process should be efficient
 • Wrong predictions may have a significant usability cost

In Off-the-Hook:
 • Prediction effectiveness and speed
 • In phishing detection, one false positive may be one too much!

Lightweight and accurate
Security/privacy applications: desiderata

Circumvention resistance
 • Resistance to adversaries

Temporal resilience
 • Resilience in dynamic environments

Minimality
 • Use of minimal training data

Privacy
 • Model privacy, training set privacy, and input/output privacy

Intelligibility
 • Transparent decision process

Effectiveness
 • Lightweight, accurate models
On avoiding pitfalls
Model complexity

Complex, non-linear models can resist circumvention better

- Model inversion/stealing is
 - easier with linear regression, decision tree, shallow NN
 - harder with ensemble methods, deep NN

- But complex models tend to have poor
 - intelligibility
 - temporal resilience (retraining training time/data: e.g, kernel SVM, deep NN)

Apply Occam’s Razor

- opt for the simplest model possible
Model secrecy

Keeping model secret can help resist circumvention

- E.g., ML-as-a-service hides model from adversaries
- But naïve designs degrade input/output privacy of users

Adapt ML analogue of Kerchoff’s desideratum?

- Keep (only) model parameters secret
- Disclose only the ML algorithm
Feature selection

Carefully hand-crafted features can resist circumvention better

- But needs domain expertise and human input
- Automated selection: “effectiveness” not resistance to manipulation

Also can improve intelligibility and temporal resilience

Avoid data-driven feature selection (e.g., bag-of-words)
Dataset selection

Selective sampling can harm temporal resilience

- Common mistake: lack of coverage in datasets, e.g.,
 - Top 100,000 Alexa websites
 - 10,000 most popular apps + Malware that contacts malicious domains

Use representative datasets

Skip to conclusions
Skip to PETS
Evaluation approaches: datasets

Evaluation should mimic real-world usage
 • Excellent academic results reportedly often fail in deployment

Use temporal separation: e.g., train on old data, test on new data
 • Avoid cross-validation → can overestimate performance

Account for unbalanced class distribution
 • E.g., Resampling during training, realistic distribution for testing

Skip to conclusions
Privacy-enhancing technologies

Training set privacy
- Adversary during training → training with encrypted data
- Generic membership inference attacks → differential privacy

Model privacy
- Model extraction → complex models, diff. privacy, rate limiting

Input/output privacy for predictions
- Local models (but compromise model privacy)
- MLaaS: Hide inputs/outputs from server; model from client
 - Trusted execution environments on servers (Intel SGX or other commercial TEEs)
 - Oblivious ML predictions

Skip to conclusions
Recommendations and good practice

Model selection
 • Keep model secret & simple

Feature selection
 • Opt for handcrafted vs. data-driven

Dataset selection
 • Use representative datasets

Evaluation approaches
 • Prefer temporal vs. cross-validation, use relevant metrics

Privacy-enhancing technologies
 • Use local predictions, oblivious ML models, differential privacy
What about Deep Learning?

Complex decision process
• Difficult to explain decisions (intelligibility)
• Difficult to reverse engineer (circumvention resistance)

Training is complex/expensive
• Requires large amount of training data (minimality)
• Relearning is costly (temporal resilience)

Automated “feature selection”
• Adversary can impact prediction by manipulating input (circumvention resistance)
Summary

Off-the-Hook for effective phishing detection

Desiderata for using ML for security/privacy applications

Some thoughts on avoiding potential pitfalls

A little provocation!

https://ssg.aalto.fi/projects/phishing/
Additional slides
Feature selection

Rely on few features:

• Limited availability of training data (for some class at least)
• Good practice to generalize a phenomenon: 10x to 100x more training instances than features
Feature minimality

Smaller set of features ensure **minimality** of model

- Recall: labeled training data is difficult to obtain/maintain
- Also helps **intelligibility** but can ease **circumvention**
- Good practice dictates 10x to 100x training instances
- Size of feature set and training set depend on complexity of phenomenon being modeled

Apply Occam’s Razor

- opt for the smallest feature set possible
Evaluation – dataset usage

Deal with unbalanced class problem for training

• Resample the class: under-sampling over-represented class
• Generate synthetic example for the under-represented class (e.g. SMOTE)
• Use penalized models (e.g. penalized-SVM)

Represent real-world distribution for testing

• Anomalies << normal instances (e.g. phishs << legitimate websites)
• Preserve repartition for relevant accuracy results from evaluation
Evaluation – metrics

Unbalanced class distribution impacts selection of metrics

• Accuracy, AUC, TP Rate, etc. can be high even for ineffective models

Example combination of metrics:

• Recall (TP_{rate}) → detection capability:

\[Recall = \frac{TP}{TP + FN} \]

• Precision → reliability / usability:

\[Precision = \frac{TP}{TP + FP} \]