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My research interests

Systems Security and Privacy

AI and Security/Privacy
• How to use AI to improve security/privacy solutions
• How to improve security/privacy of AI-based systems

Platform security
• How to design/use hardware assistance to secure software?

https://ssg-research.github.io/

https://ssg-research.github.io/mlsec/
https://ssg-research.github.io/platsec/
https://ssg-research.github.io/
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Outline

The big picture: studying ML security/privacy — why and how?

What can be done to counter model stealing?

Are we using the right adversary models?

(How) can we simultaneously deploy defenses against multiple concerns?
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What can be done to counter model stealing?

Are we using the right adversary models?

(How) can we simultaneously deploy defenses against multiple concerns?



AI will be 
pervasive

https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-market-100114

https://www.fortunebusinessinsights.com/industry-reports/artificial-intelligence-market-100114


99

https://www.forbes.com/sites/nicolemartin1/2019/10/18/how-artifical-intelligence-is-advancing-
precision-medicine/#2f720a79a4d5

https://www.zdnet.com/article/ai-is-changing-everything-about-cybersecurity-for-better-and-for-worse-heres-what-you-need-to-know/

https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-
experimented-with-predictive-policing-software

https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-
experimented-with-predictive-policing-software

https://www.forbes.com/sites/nicolemartin1/2019/10/18/how-artifical-intelligence-is-advancing-precision-medicine/#2f720a79a4d5
https://www.forbes.com/sites/nicolemartin1/2019/10/18/how-artifical-intelligence-is-advancing-precision-medicine/#2f720a79a4d5
https://www.zdnet.com/article/ai-is-changing-everything-about-cybersecurity-for-better-and-for-worse-heres-what-you-need-to-know/
https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-experimented-with-predictive-policing-software
https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-experimented-with-predictive-policing-software
https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-experimented-with-predictive-policing-software
https://www.vice.com/en_us/article/d3m7jq/dozens-of-cities-have-secretly-experimented-with-predictive-policing-software
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Machine Learning pipeline

Data owners

Analyst

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿

ML 
model Client

inference 
Service 
Provider 

API
𝐷𝐷𝑇𝑇𝑎𝑎𝑇𝑇𝐿𝐿𝑇𝑇𝑎𝑎

Where is the adversary? What is its target?
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Speed limit 
80km/h

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿

Compromised input – Model integrity

Data owners

Analyst

ML 
model

inference 
Service 
Provider 

API

Szegedy et al. – Intriguing Properties of Neural Networks, ICLR ‘14 (https://arxiv.org/abs/1312.6199v4)
Dalvi et al. – Adversarial Classification, KDD ‘04 (https://dl.acm.org/doi/10.1145/1014052.1014066) 
 

Evade model

𝐷𝐷𝑇𝑇𝑎𝑎𝑇𝑇𝐿𝐿𝑇𝑇𝑎𝑎
ML 

model Client

https://arxiv.org/abs/1312.6199v4
https://dl.acm.org/doi/10.1145/1014052.1014066
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿

Malicious client – Model confidentiality

Data owners

Analyst

ML 
model

inference 
Service 
Provider 

API Client

Tramer et al. – Stealing ML models via prediction APIs, Usenix SEC ‘16 (https://arxiv.org/abs/1609.02943)
Juuti et al. – PRADA: Protecting against DNN Model Stealing Attacks, Euro S&P ‘19 (https://arxiv.org/abs/1805.02628)
Orekondy et al. – Knockoff Nets: Stealing Functionality of Black-Box Models, CVPR ‘19 (https://arxiv.org/abs/1812.02766) 

Extract/steal model

𝐷𝐷𝑇𝑇𝑎𝑎𝑇𝑇𝐿𝐿𝑇𝑇𝑎𝑎
ML 

model

Stolen
model

https://arxiv.org/abs/1609.02943
https://arxiv.org/abs/1805.02628
https://arxiv.org/abs/1812.02766
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Towards trustworthy AI

Secure, privacy-preserving, …

13Kumar et al. – Adversarial Machine Learning – Industry Perspectives, IEEE SPW ‘20 (https://arxiv.org/abs/2002.05646)

https://arxiv.org/abs/2002.05646
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Outline

The big picture: studying ML security/privacy — why and how?

What can be done to counter model stealing?

Are we using the right adversary models?

(How) can we simultaneously deploy defenses against multiple concerns?
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Defending against model stealing

We can try to:
• prevent (or slow down[1]) model extraction, or
• detect[2] it
But current solutions are not effective

Model derivation may even become a desirable business model

Deter unauthorized model ownership via model ownership resolution (MOR):
• watermarking
• fingerprinting

[1] Dziedzic et al. – Increasing the Cost of Model Extraction with Calibrated Proof of Work, ICLR ’22 (https://openreview.net/pdf?id=EAy7C1cgE1L)
[2] Atli et al. – Extraction of Complex DNN Models: Real Threat or Boogeyman?, AAAI-EDSML ‘20 (https://arxiv.org/abs/1910.05429) 

https://openreview.net/pdf?id=EAy7C1cgE1L
https://arxiv.org/abs/1910.05429
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Watermarking

Embed watermark while training (potentially) victim model[1]

• Choose incorrect labels for a set of samples (watermark set, WM)
• Cannot resist model extraction

Embed watermark at the inference API[2]

• Use a mapping function to decide when to return incorrect predictions for queries
• Finding suitable mapping functions is difficult

Watermarking schemes tend to be not robust[3] and reduce utility

[1] Yadi et al. – Watermarking Deep Neural Networks by Backdooring, Usenix SEC ‘18 https://www.usenix.org/node/217594
[2] Szyller et. al. – DAWN: Dynamic Adversarial Watermarking of Neural Networks, ACM MM ‘21 (https://arxiv.org/abs/1906.00830)
[3] Lukas et al. – SoK: How Robust is Image Classification Deep Neural Network Watermarking? IEEE S&P ’22 (https://arxiv.org/abs/2108.04974)

https://www.usenix.org/node/217594
https://arxiv.org/abs/1906.00830
https://arxiv.org/abs/2108.04974
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Fingerprinting

Conferrable adversarial examples[1]

• Distinguish between conferrable adversarial examples vs. other transferable ones
• Computationally expensive

Dataset inference[2]

• Distinguish between models trained with different datasets
• Susceptible to false positives/negatives under certain conditions[3]

GrOVe[4]

• Use GNN embeddings as fingerprints (for GNN models)
• Effective against high-fidelity extraction[5] but likely not against low-fidelity extraction

[1] Lukas et al. – Deep Neural Network Fingerprinting by Conferrable Adversarial Examples, ICLR ’21 (https://openreview.net/forum?id=VqzVhqxkjH1)
[2] Maini et al. – Dataset Inference Ownership Resolution in Machine Learning, ICLR ’21 (https://openreview.net/pdf?id=hvdKKV2yt7T)
[3] Szyller et al. – On the Robustness of Dataset Inference, TMLR ‘23 (https://arxiv.org/abs/2210.13631)
[4] Waheed et al. – GrOVe: Ownership Verification of Graph Neural Networks using Embeddings, IEEE S&P ‘24 (https://arxiv.org/abs/2304.08566)
[5] Shen et al. – Model Stealing Attacks Against Inductive Graph Neural Networks, IEEE S&P ‘22 (https://arxiv.org/abs/2112.08331) 

https://openreview.net/forum?id=VqzVhqxkjH1
https://openreview.net/pdf?id=hvdKKV2yt7T
https://arxiv.org/abs/2210.13631
https://arxiv.org/abs/2304.08566
https://arxiv.org/abs/2112.08331
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Outline

The big picture: studying ML security/privacy — why and how?

What can be done to counter model stealing?

Are we using the right adversary models?

(How) can we simultaneously deploy defenses against multiple concerns?
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Robustness of model ownership resolution schemes

Model ownership resolution (MOR) must be robust against two types of adversaries

Malicious suspect:
• tries to evade verification (e.g., pruning, fine-tuning, noising)

Malicious accuser:
• tries to frame an independent model owner
• (secure) timestamping (watermark/fingerprint and model) is the only defense in prior work

So far, research has focused on robustness against malicious suspects
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False claims against MORs

We show how malicious accusers can make false claims against independent models:
• adversary deviates from watermark/fingerprint generation procedure

- E.g., via transferrable adversarial examples
• but still subject to specified verification procedure

Our contributions:
• formalize the notion of false claims against MORs
• provide a generalization of MORs
• demonstrate effective false claim attacks
• discuss potential countermeasures

Zhang et al. – False Claims Against Model Ownership Resolution, Usenix SEC ‘24 (https://arxiv.org/abs/2304.06607)

https://arxiv.org/abs/2304.06607
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Watermarking by backdooring[1]

Watermark generation:
• choose some out-of-distribution samples as watermark

- assigned with incorrect labels
• train using the watermark alongside normal training data (or fine tune)

- model memorizes watermark
• obtain timestamp on commitment of model and watermark

Watermark verification:
• query suspect model using watermark
• compare predictions to the assigned (incorrect) labels:

- many matching / high WM accuracy → stolen
- a few matching / low WM accuracy → not stolen

• check commitment and timestamp
[1] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, Usenix SEC 2018 (https://arxiv.org/abs/1802.04633)

https://arxiv.org/abs/1802.04633
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Watermarking by backdooring[1]: false claim[2]

Watermark generation:
• choose some out-of-distribution samples as watermark

- assigned with incorrect labels
• train using the watermark alongside your normal training data (or fine tune)

- model memorizes watermark
• obtain timestamp on commitment of model and watermark

Watermark verification:
• query suspect model using watermark
• compare predictions to the assigned (incorrect) labels:

- many matching / high WM accuracy → stolen
- a few matching / low WM accuracy → not stolen

• check commitment and timestamp
[1] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, Usenix SEC 2018 (https://arxiv.org/abs/1802.04633)
[2] Zhang et al. – False Claims Against Model Ownership Resolution, Usenix SEC ‘24 (https://arxiv.org/abs/2304.06607)

https://arxiv.org/abs/1802.04633
https://arxiv.org/abs/2304.06607


23

Watermarking by backdooring[1]: false claim[2]

False watermark generation:
• choose some out-of-distribution samples as false watermark

• perturb these samples to craft transferable adversarial examples

• obtain timestamp on commitment of model and false watermark

Watermark verification:
• query suspect model using watermark
• compare predictions to the assigned (incorrect) labels:

- many matching / high WM accuracy -> stolen
- a few matching / low WM accuracy > not stolen

• check commitment and timestamp
[1] Adi et al. – Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring, Usenix SEC 2018 (https://arxiv.org/abs/1802.04633)
[2] Zhang et al. – False Claims Against Model Ownership Resolution, Usenix SEC ‘24 (https://arxiv.org/abs/2304.06607)

https://arxiv.org/abs/1802.04633
https://arxiv.org/abs/2304.06607
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Mitigating false claims against MORs

Judge generates watermarks/fingerprints: bottleneck

Judge verifies watermarks/fingerprints were generated correctly: expensive

Train models with transferable adversarial examples: accuracy loss

24Zhang et al. – False Claims Against Model Ownership Resolution, Usenix SEC ‘24 (https://arxiv.org/abs/2304.06607)

https://arxiv.org/abs/2304.06607
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The Meta Concern: sensible adversary models

Identify potential adversaries and their goals

Identify adversary’s knowledge and capabilities:
• Data access: 

• vis-à-vis target’s training data (overlap/distribution/domain? natural/synthetic?)
• vis-à-vis target’s inferences

• Target model access: white-box/black-box/grey-box?
• Adversary type: honest-but-curious vs. malicious
• Interaction type: zero-shot/one-shot/query-budget?, adaptive?

Avoid sloppy terminology!
• “adversarial attacks” → there are no benign attacks!
• “adaptive adversaries” → cf. Kerchoff’s principle
• …

25
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Outline

The big picture: studying ML security/privacy — why and how?

What can be done to counter model stealing?

Are we using the right adversary models?

(How) can we simultaneously deploy defenses against multiple concerns?
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Unintended interactions

Prior work explored defenses to mitigate specific risks
• Defenses typically evaluated only vs. specific risks they protect against

But practitioners need to deploy multiple defenses simultaneously
• Can two defenses interact negatively with each other?
• Does a defense exacerbate or ameliorate some other (unrelated) risk?

Szyller and Asokan – Conflicting Interactions Among Protections Mechanisms for Machine Learning Models, AAAI ‘23 (https://arxiv.org/abs/2207.01991)

https://arxiv.org/abs/2207.01991


28

Ownership resolution vs. other security/privacy concerns

There are considerations other than model ownership resolution:
• model evasion (defense: adversarial training)
• training data reconstruction (defense: differential privacy)
• membership inference (defense: regularization, early stopping)
• model poisoning (defense: regularization, outlier/anomaly detection)
• …

How do ownership resolution schemes interact with the other defenses?

model watermarking

WITH
differential privacy

data watermarking
adversarial trainingfingerprinting

We investigated pairwise interactions of:

Szyller and Asokan – Conflicting Interactions Among Protections Mechanisms for Machine Learning Models, AAAI ‘23 (https://arxiv.org/abs/2207.01991)

https://arxiv.org/abs/2207.01991
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If two techniques A and B in combination result in too high a drop in
• model accuracy (ϕACC) or
• metric for A (ϕA) or
• metric for B (ϕB) 
then A and B are in conflict

Szyller and Asokan – Conflicting Interactions Among Protections Mechanisms for Machine Learning Models, AAAI ‘23 (https://arxiv.org/abs/2207.01991)

Defense
Dataset

Defense
DP ADV. TR.

WM
MNIST ϕACC ϕWM ϕACC ϕWM ϕADV

FMNIST ϕACC ϕWM ϕACC ϕWM ϕADV

CIFAR10 ϕACC ϕWM ϕACC ϕWM ϕADV

RAD-DATA
MNIST ϕACC ϕRAD-DATA ϕACC ϕRAD-DATA ϕADV

FMNIST ϕACC ϕRAD-DATA ϕACC ϕRAD-DATA ϕADV

CIFAR10 ϕACC ϕRAD-DATA ϕACC ϕRAD-DATA ϕADV

DI
MNIST ϕACC ϕDI ϕACC ϕDI ϕADV

FMNIST ϕACC ϕDI ϕACC ϕDI ϕADV

CIFAR10 ϕACC ϕDI ϕACC ϕDI ϕADV

Ownership resolution vs. other security/privacy concerns

https://arxiv.org/abs/2207.01991
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Interaction between ML defenses

Szyller and Asokan – Conflicting Interactions Among Protections Mechanisms for Machine Learning Models, AAAI ‘23 (https://arxiv.org/abs/2207.01991)

https://arxiv.org/abs/2207.01991
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Defense vs. other risks

How does a defense impact susceptibility to other (unrelated) risks?

Conjecture: overfitting and memorization are influence defenses and risks[1][2]

• Effective defenses may induce, reduce or rely on overfitting or memorization
• Risks tend to exploit overfitting or memorization
• Underlying factors that influence memorization/overfitting can be identified

Recently built a toolkit, Amulet, for comparative evaluation of attacks & defenses[3]

Currently working on “how to easily determine if a given set of defenses conflict?”[4]

31
[2] Blog article: https://crysp.uwaterloo.ca/ssg/blog/2024/05/unintended-interactions-among-ml.html
[3] Amulet repo: https://github.com/ssg-research/amulet
[4] Duddu, Zhang, Asokan – Combining Machine learning Defenses without Conflicts. (https://arxiv.org/abs/2411.09776)

Distinguished Paper Award

[1] Duddu, Szyller, and Asokan - SoK: Unintended Interactions among Machine Learning Defenses and Risks, IEEE S&P ‘24. (https://arxiv.org/abs/2312.04542)

https://crysp.uwaterloo.ca/ssg/blog/2024/05/unintended-interactions-among-ml.html
https://github.com/ssg-research/amulet
https://arxiv.org/abs/2411.09776
https://arxiv.org/abs/2312.04542
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Factors influencing overfitting and memorization
O1 Curvature smoothness of the objective function
O2 Distinguishability across datasets (O2.1), subgroups (O2.2),  and models (O2.3) 
O3 Distance of training data to decision boundary

D1 Size of training data
D2 Tail length of distribution
D3 Number of attributes
D4 Priority of learning stable attributes

M1 Model capacity

Blog article: https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
Duddu, Szyller, and Asokan - SoK: Unintended Interactions among Machine Learning Defenses and Risks, IEEE S&P ‘24. (https://arxiv.org/abs/2312.04542)

https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
https://arxiv.org/abs/2312.04542
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Framework: systematizing defenses vs. other risks
Effectiveness of defense <d> correlates with a change in factor <f>
Change in <f> correlates with change in susceptibility to risk <r> 
• ↑: positive correlation; ↓: negative correlation

Identify <f> impacted by <d>, and <r> influenced by changes in <f>

Blog article: https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
Duddu, Szyller, and Asokan - SoK: Unintended Interactions among Machine Learning Defenses and Risks, IEEE S&P ‘24. (https://arxiv.org/abs/2312.04542)

https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
https://arxiv.org/abs/2312.04542
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Situating prior work in the framework
Risk increases (●) or decreases (●) or unexplored (●) when a defense is effective
Evaluate the influence of factors empirically (●), theoretically (ʘ), conjectured ( )

Blog article: https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
Duddu, Szyller, and Asokan - SoK: Unintended Interactions among Machine Learning Defenses and Risks, IEEE S&P ‘24. (https://arxiv.org/abs/2312.04542)

https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
https://arxiv.org/abs/2312.04542
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Guideline for conjecturing unintended interactions
For defense <d>, risk <r> and common factor <f>, use pair of arrows that describe 
how <d> and <r> correspond to <f>

Conjectured interaction for a given <f>:
• If arrows align (↑,↑) or (↓,↓) ➞ <r> increases when <d> is effective (●)
• Else for (↑,↓) or (↓,↑) ➞ <r> decreases when <d> is effective (●)

Conjectured overall interaction: consider conjectures from all <f>s:
• If all <f> agree, then conjectured overall interaction is unanimous
• Otherwise, prioritize conjecture from dominant <f> (dominance may depend on attack)
• Value of a non-common factor may affect overall interaction 

Blog article: https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
Duddu, Szyller, and Asokan - SoK: Unintended Interactions among Machine Learning Defenses and Risks, IEEE S&P ‘24. (https://arxiv.org/abs/2312.04542)

https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
https://arxiv.org/abs/2312.04542
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Group fairness (FD1) vs. data reconstruction (P2)
Conjectured Interaction from common factor:
O2.2 Distinguishability across subgroups: FD1 ↓, P2 ↑ (➞ ●)
Non-common factor: D3 # Attributes -- risk may decrease with D3

Empirical Evidence
Fair model ➞ lower attack success (confirms ●) 
• Lowers distinguishability across subgroups

Non-common factor D3
# attributes = 10: 
• Fair model ➞ lower attack success
# attributes > 10: 
• Fair model ➞ no change in attack success

(note: # attributes do not affect accuracy drop caused by fairness)

Metric Baseline Fair Model

Accuracy 84.40 ± 0.09 77.96 ± 0.58

Recon. Loss 0.85 ± 0.01 0.95 ± 0.02

#Attributes Baseline Fair Model

Recon. Loss Accuracy Recon. Loss Accuracy

10 0.85 ± 0.01 84.40 ± 0.09 0.95 ± 0.02 78.96 ± 0.58

20 0.93 ± 0.03 84.72 ± 0.22 0.93 ± 0.00 80.32 ± 1.12

30 0.95 ± 0.02 84.41 ± 0.39 0.94 ± 0.00 79.50 ±0.91

Blog article: https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
Duddu, Szyller, and Asokan - SoK: Unintended Interactions among Machine Learning Defenses and Risks, IEEE S&P ‘24. (https://arxiv.org/abs/2312.04542)

https://blog.ssg.aalto.fi/2024/05/unintended-interactions-among-ml.html
https://arxiv.org/abs/2312.04542
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Protecting Against Multiple Risks

Desiderata
• accurate: correctly identifies whether a combination is effective or not
• scalable: allows combining more than two defenses
• non-invasive: requires no changes to the defenses being combined
• general: applicable to different types of defenses

Combine existing defenses effectively while avoiding conflicts
• not incur a drop in effectiveness constituent defenses

Prior combination techniques do not meet all requirements
• Need a principled approach to combine existing defenses without modification
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Combining ML Defenses without Conflicts

Observation:
• ML defenses operate on one of three stages of ML pipelines

DEF\CON: quickly identify effective combinations
• 90% accuracy on eight combinations from prior work
• 81% in 30 previously unexplored combinations

Intuition: account for reasons underlying conflicts among defenses
For D1 and D2 applied in that order, there can be a conflict if
• D1 uses a risk protected by D2

• Changes by D2 overrides changes by D1

Duddu, Zhang, and Asokan – Combining Machine Learning Defenses without Conflicts, arXiv 2024. (https://arxiv.org/abs/2411.09776)

S1: Same Stage

S2: D2 local/no 
change? S3: D1 uses R?

S4: D2 protects R?

Training Data

Training

Architecture & 
Configuration

Model

Input

Output

Pre-Training In-Training Post-Training

https://arxiv.org/abs/2411.09776
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Takeaways

Are we using the right adversary models? Needs work
Robustness against false accusations in MORs needs improvement
More generally, ML security/privacy research needs widely accepted, streamlined adversary models

Can we simultaneously deploy defenses against multiple concerns? Needs work
Important consideration but not yet sufficiently explored

More on our ML security/privacy work at https://ssg-research.github.io/mlsec/

https://ssg-research.github.io/mlsec/
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Takeaways

Are we using the right adversary models? Needs work
Robustness against false accusations in MORs needs improvement
More generally, ML security/privacy research needs widely accepted, streamlined adversary models

Can we simultaneously deploy defenses against multiple concerns? Needs work
Important consideration but not yet sufficiently explored

Other research topics:
ML security/privacy:

ML ownership resolution, Conflicting ML defenses, ML property attestation, robust concept removal in gen AI
Platform security: hardware-assisted run-time security, secure outsourced computing

Open (postdoc, grad student) positions to help lead our work: ML security/privacy, platform security
https://asokan.org/asokan/research/SecureSystems-open-positions-Jan2024.php

https://asokan.org/asokan/research/SecureSystems-open-positions-Jan2024.php
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