

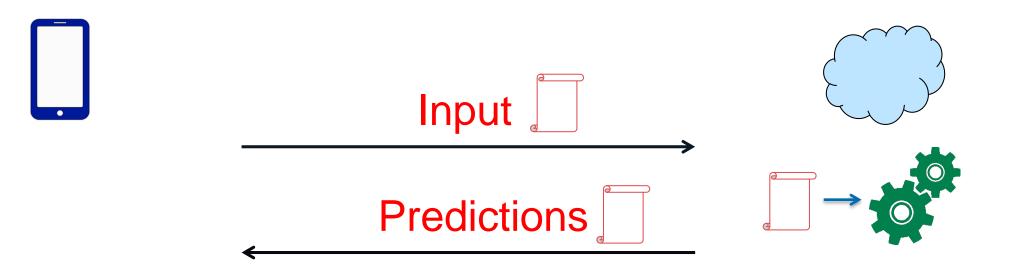
Oblivious Neural Network Predictions via MiniONN Transformations

N. Asokan, <u>https://asokan.org/asokan/</u>, @nasokan

(Joint work with Jian Liu, Mika Juuti, Yao Lu)

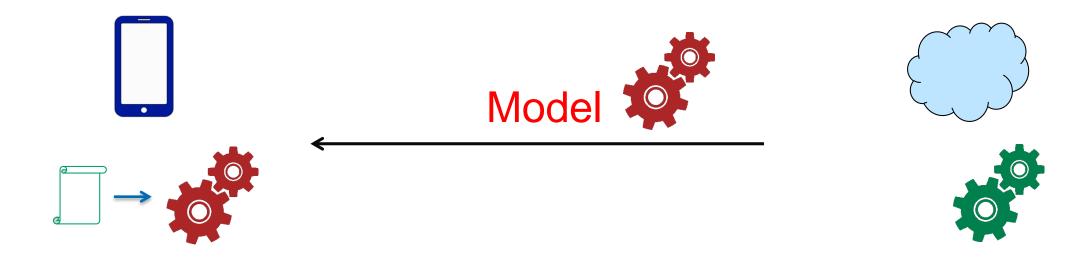
By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=5411904

Machine learning as a service (MLaaS)



violation of clients' privacy

Running predictions on client-side



model theft evasion model inversion

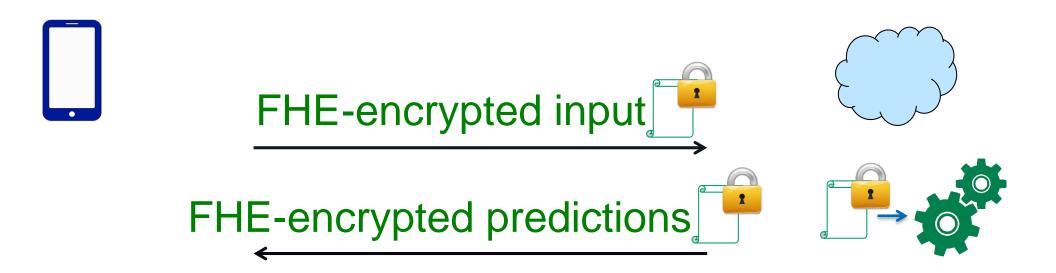
Oblivious Neural Networks (ONN)

Given a neural network, is it possible to make it oblivious?

• server learns nothing about clients' input;

• clients learn nothing about the model.

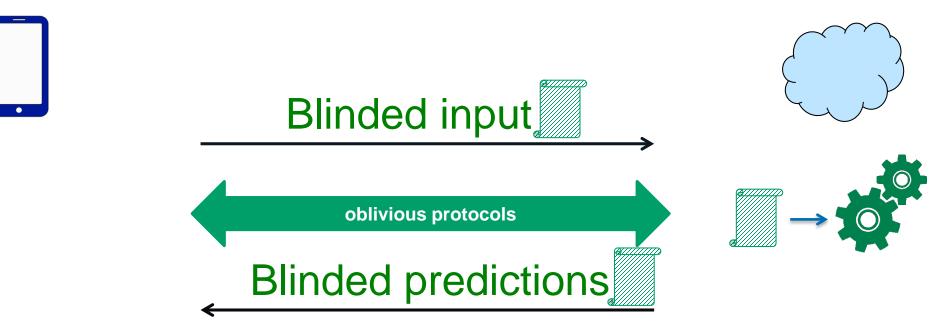
Example: CryptoNets



- High throughput for batch queries from same client
- High overhead for single queries: 297.5s and 372MB (MNIST dataset)
- Cannot support: high-degree polynomials, comparisons, ...

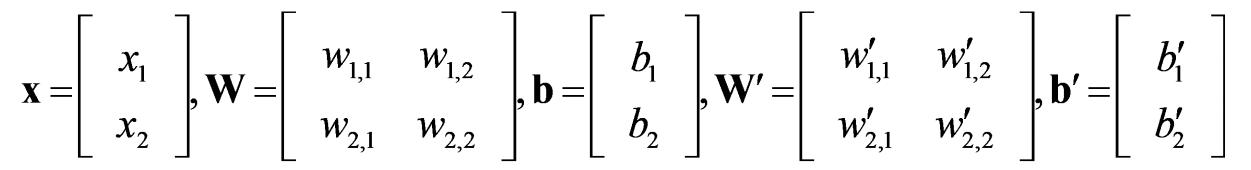
MiniONN: Overview

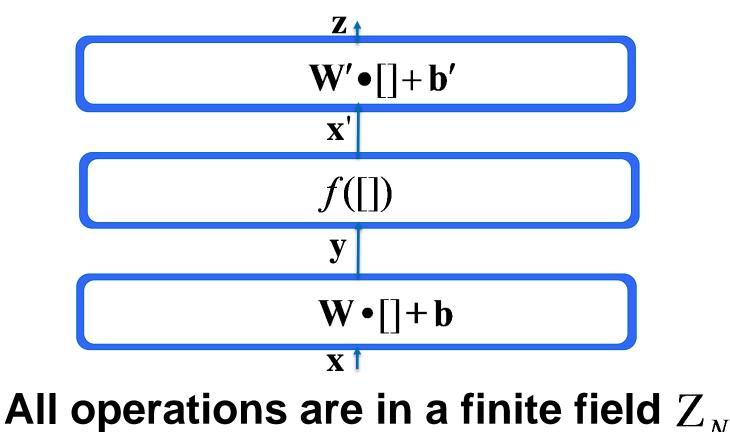
By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=5411904



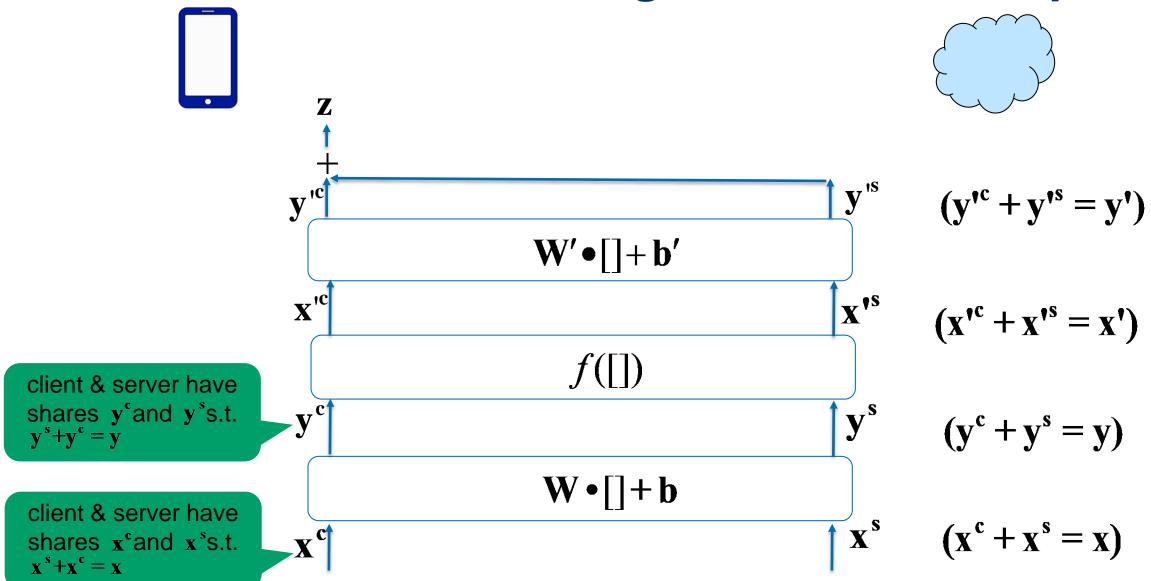
- Low overhead: ~1s
- Support all common neural networks

Example $z = W' \bullet f(W \bullet x + b) + b'$

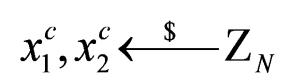




Core idea: use secret sharing for oblivious computation



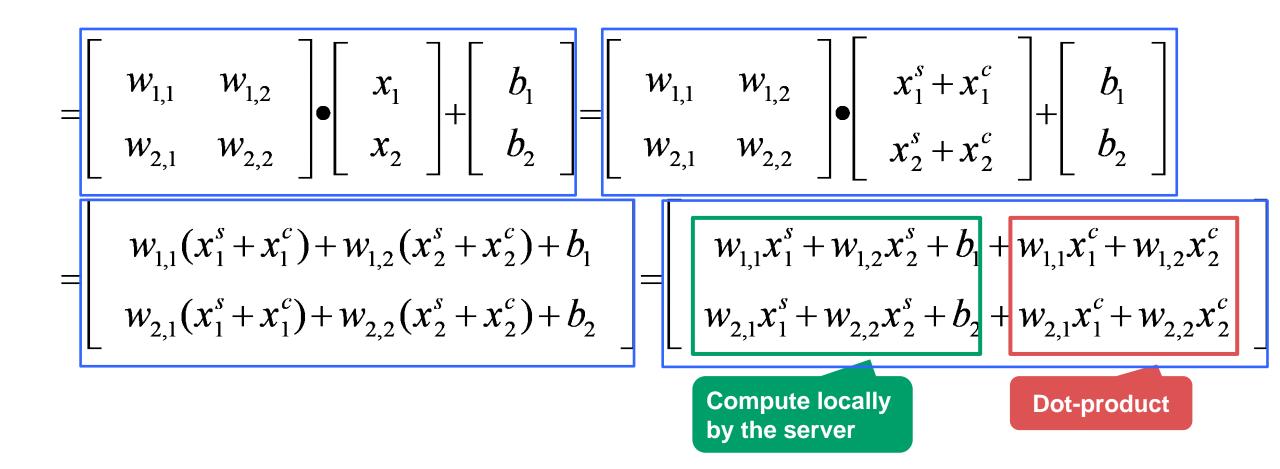
Secret sharing initial input **x**



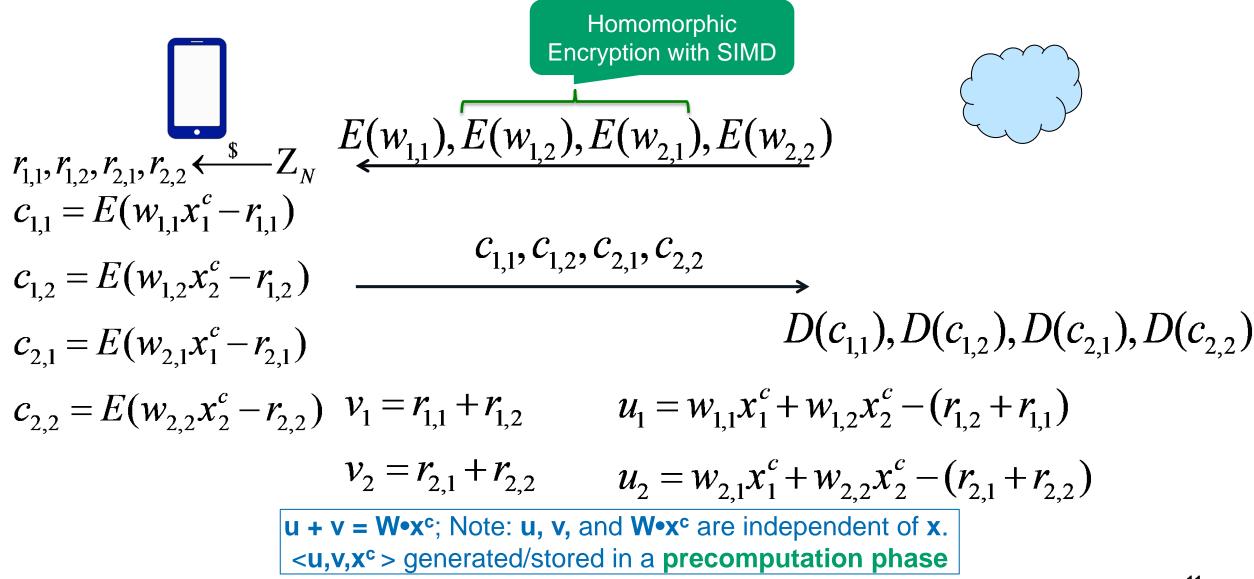
$$x_1^s \coloneqq x_1 - x_1^c, \quad x_2^s \coloneqq x_2 - x_2^c$$

Note that **x**^c is independent of **x**. Can be **pre-chosen**

Oblivious linear transformation $W \bullet x + b$



Oblivious linear transformation: dot-product



Oblivious linear transformation $W \bullet x + b$

$$= \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{bmatrix} \bullet \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{bmatrix} \bullet \begin{bmatrix} x_1^s + x_1^c \\ x_2^s + x_2^c \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
$$= \begin{bmatrix} w_{1,1}(x_1^s + x_1^c) + w_{1,2}(x_2^s + x_2^c) + b_1 \\ w_{2,1}(x_1^s + x_1^c) + w_{2,2}(x_2^s + x_2^c) + b_2 \end{bmatrix} = \begin{bmatrix} w_{1,1}x_1^s + w_{1,2}x_2^s + b_1 \\ w_{2,1}x_1^s + w_{2,2}x_2^s + b_2 \end{bmatrix} + \begin{bmatrix} w_{1,1}x_1^s + w_{2,2}x_2^s + b_1 \\ w_{2,1}x_1^s + w_{2,2}x_2^s + b_2 \end{bmatrix} + \begin{bmatrix} w_{1,1}x_1^s + w_{2,2}x_2^s + b_1 \\ w_{2,1}x_1^s + w_{2,2}x_2^s + b_2 \end{bmatrix}$$

Oblivious linear transformation $W \bullet x + b$

$$= \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{bmatrix} \bullet \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \end{bmatrix} \bullet \begin{bmatrix} x_1^s + x_1^c \\ x_2^s + x_2^c \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
$$= \begin{bmatrix} w_{1,1}(x_1^s + x_1^c) + w_{1,2}(x_2^s + x_2^c) + b_1 \\ w_{2,1}(x_1^s + x_1^c) + w_{2,2}(x_2^s + x_2^c) + b_2 \end{bmatrix} = \begin{bmatrix} w_{1,1}x_1^s + w_{1,2}x_2^s + b_1 + w_{1,1}x_1^c + w_{1,2}x_2^c \\ w_{2,1}x_1^s + w_{2,2}x_2^s + b_2 + w_{2,1}x_1^c + w_{2,2}x_2^c \end{bmatrix}$$
$$= \begin{bmatrix} w_{1,1}x_1^s + w_{1,2}x_2^s + b_1 + u_1 \\ w_{2,1}x_1^s + w_{2,2}x_2^s + b_2 + u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Rightarrow \begin{bmatrix} y_1^s \\ y_2^s \end{bmatrix} + \begin{bmatrix} y_1^c \\ y_2^c \end{bmatrix}$$

Oblivious activation/pooling functions f(y)

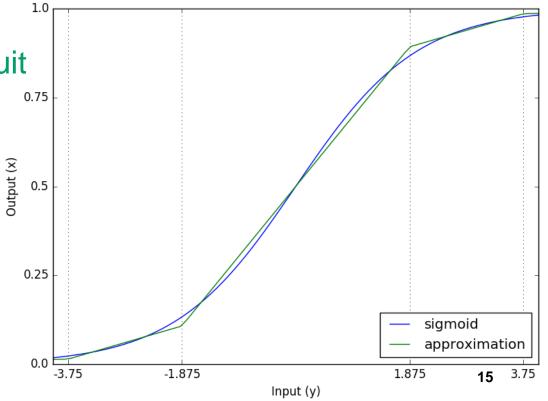
Piecewise linear functions e.g.,

- ReLU: $x := \max(y, 0)$
- Oblivious ReLU: $x^s + x^c := \max(y^s + y^c, 0)$
 - easily computed obliviously by a garbled circuit

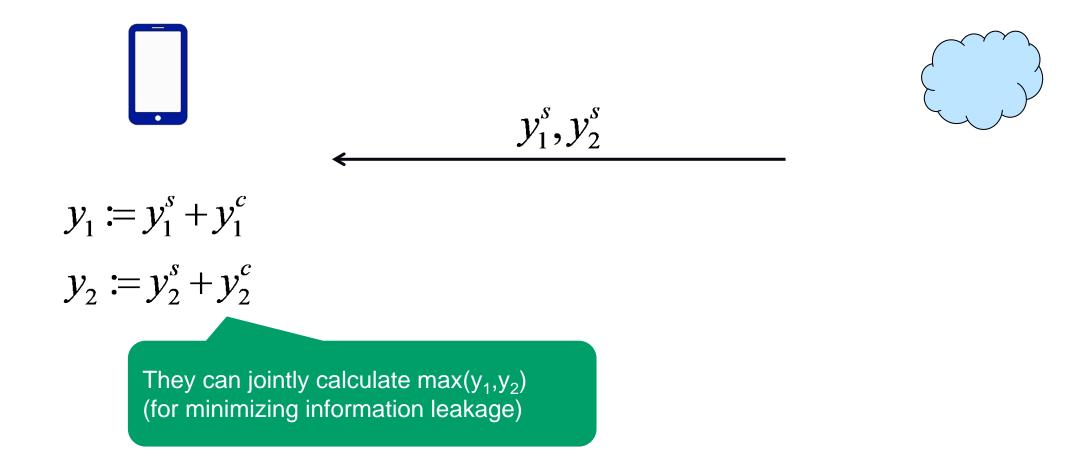
Oblivious activation/pooling functions f(y)

Smooth functions e.g.,

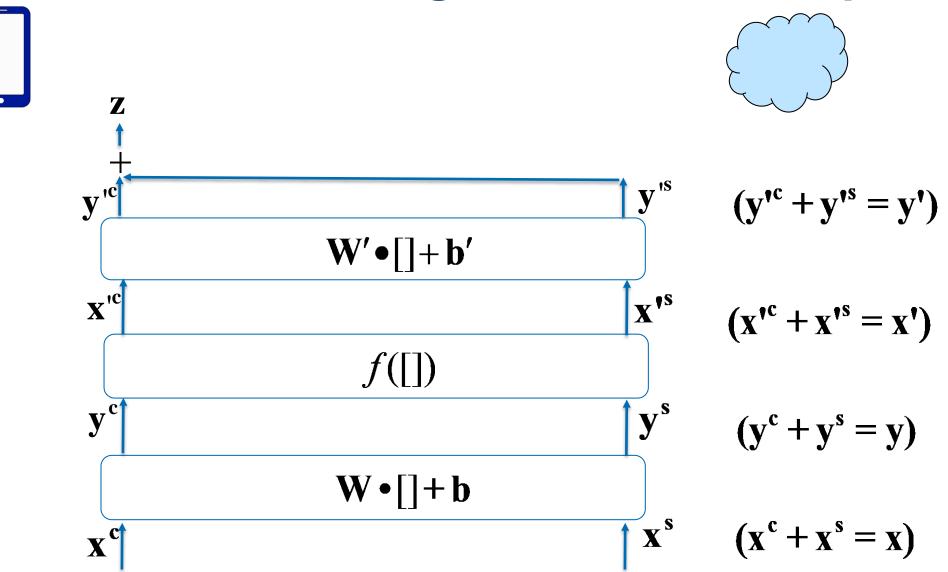
- Sigmoid: $x := 1/(1 + e^{-y})$
- Oblivious sigmoid: $x^{s} + x^{c} := 1/(1 + e^{-(y^{s} + y^{c})})$
 - approximate by a piecewise linear function
 - then compute obliviously by a garbled circuit
 - empirically: ~14 segments sufficient



Combining the final result



Core idea: use secret sharing for oblivious computation



Performance (for single queries)

Model	Latency (s)	Msg sizes (MB)	Loss of accuracy
MNIST/Square	0.4 (+ 0.88)	44 (+ 3.6)	none
CIFAR-10/ReLU	472 (+ 72)	6226 (+ 3046)	none
PTB/Sigmoid	4.39 (+ 13.9)	474 (+ 86.7)	Less than 0.5% (cross-entropy loss)

Pre-computation phase timings in parentheses

PTB = Penn Treebank

MiniONN pros and cons

300-700x faster than CryptoNets

Can transform any given neural network to its oblivious variant

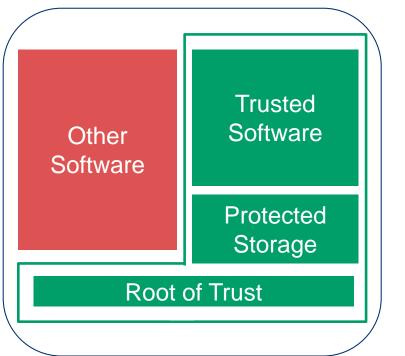
Still ~1000x slower than without privacy

Server can no longer filter requests or do sophisticated metering

Assumes online connectivity to server

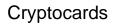
Reveals structure (but not params) of NN

Can trusted computing help?



Hardware support for

- Isolated execution: Trusted Execution Environment
- Protected storage: Sealing
- Ability to report status to a remote verifier: Attestation



Trusted Platform Modules

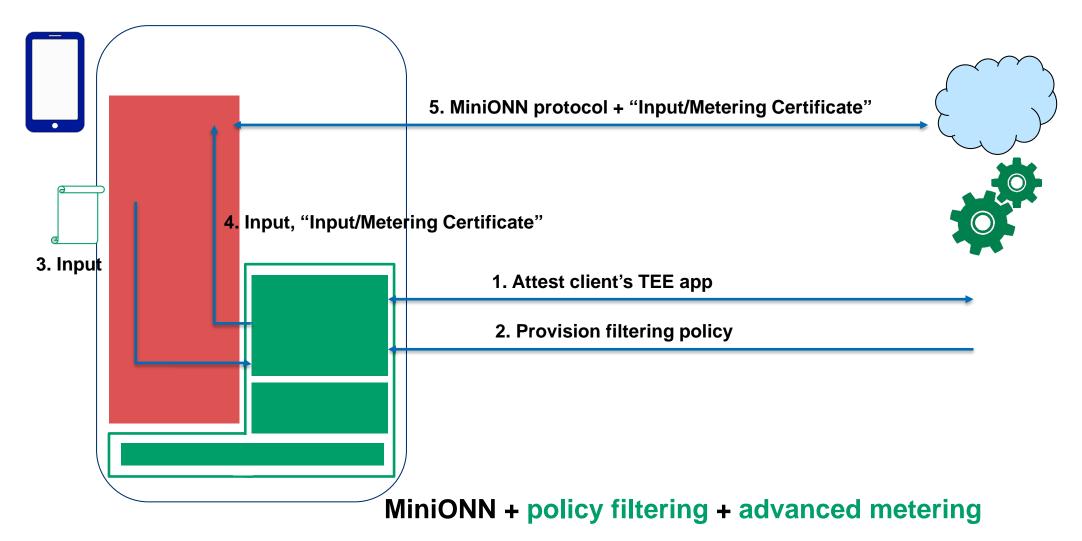
ARM TrustZone

https://www.arm.com/products/security-on-arm/trustzone

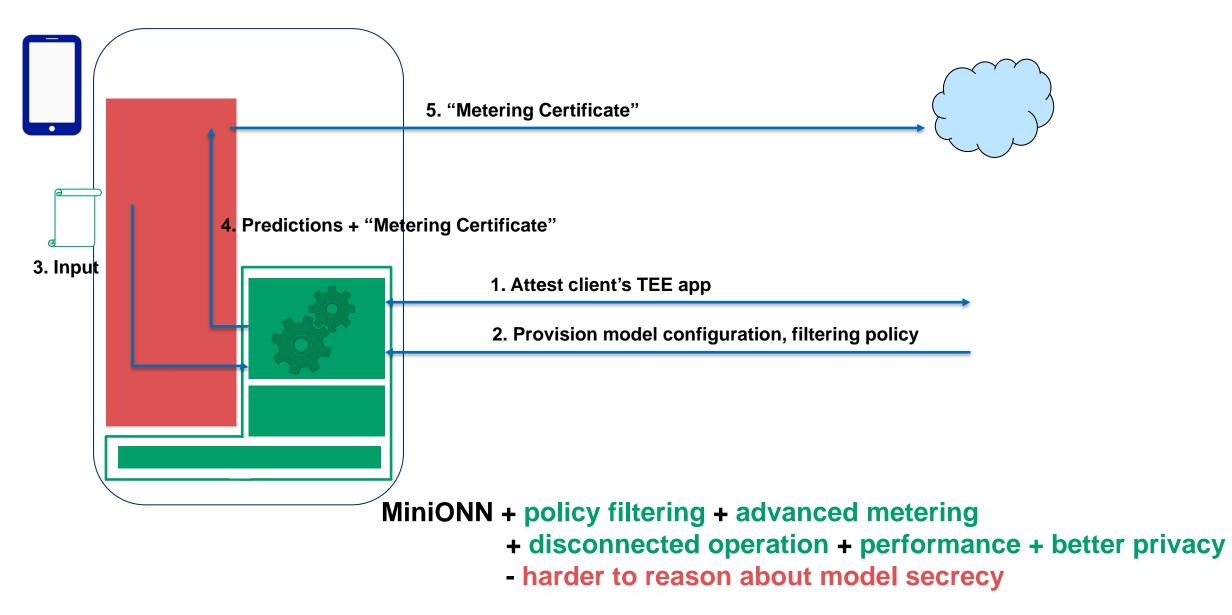
Intel Software Guard Extensions

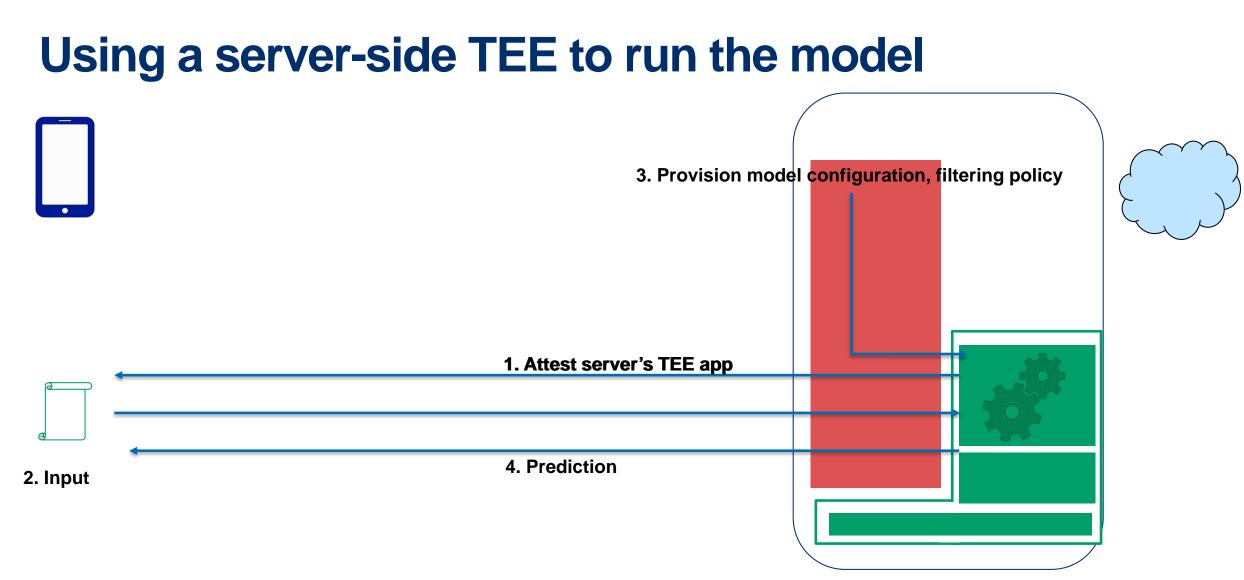
23

Using a client-side TEE to vet input



Using a client-side TEE to run the model





MiniONN + policy filtering + advanced metering

- disconnected operation + performance + better privacy

MiniONN: Efficiently transform any given neural network into oblivious form with no/negligible accuracy loss

Trusted Computing can help realize improved security and privacy for ML

ML is very fragile in adversarial settings

https://eprint.iacr.org/2017/452 CCS 2017