
Oblivious Neural Network
Predictions via MiniONN
Transformations
N. Asokan, https://asokan.org/asokan/, @nasokan

(Joint work with Jian Liu, Mika Juuti, Yao Lu)

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=54119040

https://asokan.org/asokan/
https://en.wikipedia.org/w/index.php?curid=54119040

Machine learning as a service (MLaaS)

2

Predictions

Input

violation of clients’ privacy

Running predictions on client-side

3

Model

model theft
evasion
model inversion

Oblivious Neural Networks (ONN)

Given a neural network, is it possible to make it oblivious?

• server learns nothing about clients' input;

• clients learn nothing about the model.

4

Example: CryptoNets

5

FHE-encrypted input

FHE-encrypted predictions

[GDLLNW16] CryptoNets, ICML 2016

• High throughput for batch queries from same client
• High overhead for single queries: 297.5s and 372MB (MNIST dataset)
• Cannot support: high-degree polynomials, comparisons, …

http://proceedings.mlr.press/v48/gilad-bachrach16.pdf

MiniONN: Overview

6

Blinded input

Blinded predictions

oblivious protocols

• Low overhead: ~1s
• Support all common neural networks

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=54119040

https://en.wikipedia.org/w/index.php?curid=54119040

Example

7All operations are in a finite field
x

y

'x

z

Core idea: use secret sharing for oblivious computation

cy

cx'

cy' sy'
+
z

client & server have
shares and s.t.

client & server have
shares and s.t.

8

Secret sharing initial input

9

Note that xc is independent of x. Can be pre-chosen

x

10

Compute locally
by the server

Dot-product

Oblivious linear transformation

Oblivious linear transformation: dot-product

11

Homomorphic
Encryption with SIMD

u + v = W•xc; Note: u, v, and W•xc are independent of x.
<u,v,xc > generated/stored in a precomputation phase

12

Oblivious linear transformation

13

Oblivious linear transformation

Oblivious activation/pooling functions

14

Piecewise linear functions e.g.,
• ReLU:
• Oblivious ReLU:

- easily computed obliviously by a garbled circuit

)1/(1:)(cs yycs exx +−+=+

Oblivious activation/pooling functions

15

Smooth functions e.g.,
• Sigmoid:
• Oblivious sigmoid:

- approximate by a piecewise linear function
- then compute obliviously by a garbled circuit
- empirically: ~14 segments sufficient

Combining the final result

17

They can jointly calculate max(y1,y2)
(for minimizing information leakage)

Core idea: use secret sharing for oblivious computation

cy

cx'

cy' sy'
+
z

18

PTB/Sigmoid 4.39 (+ 13.9) 474 (+ 86.7) Less than 0.5%
(cross-entropy loss)

Performance (for single queries)

21

Pre-computation phase timings in parentheses

CIFAR-10/ReLU 472 (+ 72) 6226 (+ 3046) none

Model Latency (s) Msg sizes (MB) Loss of
accuracy

MNIST/Square 0.4 (+ 0.88) 44 (+ 3.6) none

PTB = Penn Treebank

MiniONN pros and cons

300-700x faster than CryptoNets

Can transform any given neural network
to its oblivious variant

Still ~1000x slower than without privacy

Server can no longer filter requests or do
sophisticated metering

Assumes online connectivity to server

Reveals structure (but not params) of NN

22

Can trusted computing help?

Hardware support for
- Isolated execution: Trusted Execution Environment
- Protected storage: Sealing
- Ability to report status to a remote verifier:

Attestation

23

Other
Software

Trusted
Software

Protected
Storage

Root of Trust

https://www.ibm.com/security/cryptocards/ https://www.infineon.com/tpm https://software.intel.com/en-us/sgxhttps://www.arm.com/products/security-on-arm/trustzone

Cryptocards Trusted Platform Modules ARM TrustZone Intel Software Guard Extensions

https://www.ibm.com/security/cryptocards/
https://www.infineon.com/tpm
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone

Using a client-side TEE to vet input

1. Attest client’s TEE app
3. Input

4. Input, “Input/Metering Certificate”

5. MiniONN protocol + “Input/Metering Certificate”

2. Provision filtering policy

MiniONN + policy filtering + advanced metering

3. Input

Using a client-side TEE to run the model

1. Attest client’s TEE app

4. Predictions + “Metering Certificate”

2. Provision model configuration, filtering policy

MiniONN + policy filtering + advanced metering
+ disconnected operation + performance + better privacy
- harder to reason about model secrecy

5. “Metering Certificate”

2. Input

Using a server-side TEE to run the model

1. Attest server’s TEE app

3. Provision model configuration, filtering policy

MiniONN + policy filtering + advanced metering
- disconnected operation + performance + better privacy

1. Attest server’s TEE app

4. Prediction

27

MiniONN: Efficiently transform any given
neural network into oblivious form with
no/negligible accuracy loss

Trusted Computing can help realize
improved security and privacy for ML

ML is very fragile in adversarial settings
https://eprint.iacr.org/2017/452
CCS 2017

https://eprint.iacr.org/2017/452

	Oblivious Neural Network Predictions via MiniONN Transformations
	Machine learning as a service (MLaaS)
	Running predictions on client-side
	Oblivious Neural Networks (ONN)
	Example: CryptoNets
	MiniONN: Overview
	Example
	Core idea: use secret sharing for oblivious computation
	Secret sharing initial input
	Oblivious linear transformation
	Oblivious linear transformation: dot-product
	Oblivious linear transformation
	Oblivious linear transformation
	Oblivious activation/pooling functions
	Oblivious activation/pooling functions
	Combining the final result
	Core idea: use secret sharing for oblivious computation
	Performance (for single queries)
	MiniONN pros and cons
	Can trusted computing help?
	Using a client-side TEE to vet input
	Using a client-side TEE to run the model
	Using a server-side TEE to run the model
	Slide Number 27

