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Machine learning as a service (MLaaS)
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Predictions

Input

violation of clients’ privacy



Running predictions on client-side
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Model

model theft
evasion
model inversion



Oblivious Neural Networks (ONN)

Given a neural network, is it possible to make it oblivious?

• server learns nothing about clients' input; 

• clients learn nothing about the model. 
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Example: CryptoNets
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FHE-encrypted input

FHE-encrypted predictions

[GDLLNW16] CryptoNets, ICML 2016

• High throughput for batch queries from same client 
• High overhead for single queries: 297.5s and 372MB (MNIST dataset)
• Cannot support: high-degree polynomials, comparisons, …

http://proceedings.mlr.press/v48/gilad-bachrach16.pdf


MiniONN: Overview
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Blinded input

Blinded predictions

oblivious protocols

• Low overhead: ~1s 
• Support all common neural networks

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=54119040

https://en.wikipedia.org/w/index.php?curid=54119040


Example
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Core idea: use secret sharing for oblivious computation
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client & server have 
shares     and     s.t.

client & server have 
shares     and     s.t.
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Secret sharing initial input
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Note that xc is independent of x. Can be pre-chosen

x
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Compute locally 
by the server

Dot-product

Oblivious linear transformation



Oblivious linear transformation: dot-product
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Homomorphic
Encryption with SIMD

u + v = W•xc; Note: u, v, and W•xc are independent of x. 
<u,v,xc > generated/stored in a precomputation phase
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Oblivious linear transformation
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Oblivious linear transformation



Oblivious activation/pooling functions
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Piecewise linear functions e.g.,
• ReLU:
• Oblivious ReLU:

- easily computed obliviously by a garbled circuit
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Oblivious activation/pooling functions
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Smooth functions e.g.,
• Sigmoid:
• Oblivious sigmoid:

- approximate by a piecewise linear function
- then compute obliviously by a garbled circuit
- empirically: ~14 segments sufficient



Combining the final result
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They can jointly calculate max(y1,y2)
(for minimizing information leakage)



Core idea: use secret sharing for oblivious computation
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cy' sy'
+
z
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PTB/Sigmoid 4.39 (+ 13.9) 474 (+ 86.7) Less than 0.5%
(cross-entropy loss)

Performance (for single queries)
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Pre-computation phase timings in parentheses

CIFAR-10/ReLU 472 (+ 72) 6226 (+ 3046) none

Model Latency (s) Msg sizes (MB) Loss of 
accuracy

MNIST/Square 0.4 (+ 0.88) 44 (+ 3.6) none

PTB = Penn Treebank



MiniONN pros and cons

300-700x faster than CryptoNets

Can transform any given neural network 
to its oblivious variant

Still ~1000x slower than without privacy

Server can no longer filter requests or do 
sophisticated metering

Assumes online connectivity to server

Reveals structure (but not params) of NN
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Can trusted computing help?

Hardware support for
- Isolated execution: Trusted Execution Environment
- Protected storage: Sealing
- Ability to report status to a remote verifier: 

Attestation
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Other 
Software

Trusted 
Software

Protected 
Storage

Root of Trust

https://www.ibm.com/security/cryptocards/ https://www.infineon.com/tpm https://software.intel.com/en-us/sgxhttps://www.arm.com/products/security-on-arm/trustzone

Cryptocards Trusted Platform Modules ARM TrustZone Intel Software Guard Extensions

https://www.ibm.com/security/cryptocards/
https://www.infineon.com/tpm
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone


Using a client-side TEE to vet input

1. Attest client’s TEE app
3. Input

4. Input, “Input/Metering Certificate”

5. MiniONN protocol + “Input/Metering Certificate”

2. Provision filtering policy

MiniONN + policy filtering + advanced metering



3. Input

Using a client-side TEE to run the model

1. Attest client’s TEE app

4. Predictions + “Metering Certificate”

2. Provision model configuration, filtering policy

MiniONN + policy filtering + advanced metering
+ disconnected operation + performance + better privacy
- harder to reason about model secrecy

5. “Metering Certificate”



2. Input

Using a server-side TEE to run the model

1. Attest server’s TEE app

3. Provision model configuration, filtering policy

MiniONN + policy filtering + advanced metering
- disconnected operation + performance + better privacy

1. Attest server’s TEE app

4. Prediction
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MiniONN: Efficiently transform any given
neural network into oblivious form with 
no/negligible accuracy loss

Trusted Computing can help realize 
improved security and privacy for ML

ML is very fragile in adversarial settings
https://eprint.iacr.org/2017/452
CCS 2017 

https://eprint.iacr.org/2017/452
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