
Trustworthy & Accountable
Function-as-a-Service

Joint work with Fritz Alder, Arseny Kurnikov, Andrew Paverd, Michael Steiner

N. Asokan
https://asokan.org/asokan/
@nasokan

https://asokan.org/asokan/

Function-as-a-Service (FaaS)

Recent instantiation of “serverless computing”
• Customer specifies the function
• Service provider manages runtime, scaling, load-balancing etc.

Differences to Infrastructure-as-a-Service (IaaS)
• Relatively short-running function invocations
• Stateless functions (storage provided by separate service)

2

Motivation

FaaS is available from established cloud providers

Usual security concerns of cloud computing still apply:
• Confidentiality of data
• Integrity of computation

3

Motivation

4https://www.theregister.co.uk/2018/07/24/apache_ibm_cloud_vulnerable/

https://www.theregister.co.uk/2018/07/24/apache_ibm_cloud_vulnerable/

Motivation

FaaS is available from established cloud providers

Usual security concerns of cloud computing still apply:
• Confidentiality of data
• Integrity of computation

More accurate resource usage measurements required:
• Sub-second compute time measurements

Currently achieved via existing reputational trust, but can we do better?

5

Motivation

FaaS can also be provided by non-traditional service providers
• Data centres with spare capacity
• Individuals with powerful PCs (e.g. gamers)

Open source frameworks available

Multiple start-ups in this space

6
https://golem.network/ https://ankr.com

https://openwhisk.apache.org/

https://golem.network/
https://ankr.com/
https://openwhisk.apache.org/

Motivation

FaaS can also be provided by non-traditional service providers
• Data centres with spare capacity
• Individuals with powerful PCs (e.g. gamers)

Heightened security concerns:
• Service provider identity/location may be unknown
• Service provider may not have security expertise

Very few disincentives for cheating:
• Malicious service provider might inflate resource usage measurements

No reputational trust has been established

7

System Model &
Requirements

System model

9

Service ProviderFunction Provider

ClientsClientsClients

2. Inputs

3. Outputs
FunctionsFunctionsFunctions

1. Provision function

4. Resource
measurements

Adversary model

Two types of adversaries:

Service provider
• Learn inputs and outputs of function invocations
• Modify inputs and outputs, or execute the function incorrectly
• Overcharge the function provider

- Falsely inflate resource usage measurements
- Create fake function invocations

Function provider
• Under-pay the service provider for resources used by the function

10

Requirements

R1 - Security
• Service provider cannot modify inputs or outputs of a function invocation
• Client assured that output is result of correct execution of intended function on supplied inputs

R2 - Privacy
• Service provider cannot learn inputs or outputs of a function invocation

R3 - Measurement accuracy
• Resource measurements must have sufficient accuracy for FaaS billing

R4 - Measurement veracity
• All parties must be able to verify authenticity of resource measurements

11

Trusted Execution Environments

Hardware support for
- Isolated execution: Isolated Execution Environment
- Protected storage: Sealing
- Ability to convince remote verifiers: (Remote) Attestation

Other
Software

Trusted
Software

Protected
Storage

Root of Trust

Trusted Execution Environments (TEEs)
Operating in parallel with “rich execution environments” (REEs)

Hardware-assisted TEEs are pervasive

Hardware support for
- Isolated execution: Isolated Execution Environment
- Protected storage: Sealing
- Ability to convince remote verifiers: (Remote) Attestation

Other
Software

Trusted
Software

Protected
Storage

Root of Trust

https://www.ibm.com/security/cryptocards/ https://www.infineon.com/tpm https://software.intel.com/en-us/sgxhttps://www.arm.com/products/security-on-arm/trustzone

Cryptocards Trusted Platform Modules ARM TrustZone Intel Software Guard Extensions

Trusted Execution Environments (TEEs)
Operating in parallel with “rich execution environments” (REEs)

[A+14] “Mobile Trusted Computing”, Proceedings of the IEEE, 102(8) (2014)
[EKA14] “Untapped potential of trusted execution environments”, IEEE S&P Magazine, 12:04 (2014) 13

https://www.ibm.com/security/cryptocards/
https://www.infineon.com/tpm
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone
https://doi.org/10.1109/JPROC.2014.2332007
https://doi.org/10.1109/MSP.2014.38

Background: Intel SGX

User Process

OS

App Code

App Data

Enclave

Physical address space

System Memory

Enclave Page
Cache

Enclave
Code

Enclave
Data

TEE
(Encrypted &
integrity-protected)

Observe

REE

https://software.intel.com/sgx

CPU enforced TEE (enclave)

Remote attestation

Secure memory
• Confidentiality
• Integrity

Adversary

14

Trusted
Untrusted

https://software.intel.com/sgx

Service Provider

Preliminary design

Execute each function in an SGX enclave

Use remote attestation to establish
secure communication channels

Measure resource consumption from
within the enclave

15

SGX Enclave

Function

MeasurementsRemote attestation

Design Challenges

Service Provider

Challenge: Sandboxing untrusted functions

Malicious function provider could attempt
to reduce in-enclave measurements

• No protection from code in the same enclave
SGX Enclave

Function

Measurements

17

Service Provider

Challenge: Attesting worker enclaves

Default SGX remote attestation involves
multiple message round-trips

• Overhead and latency for short-running
functions is too high

• Must be repeated for each enclave

SGX Enclave

Function

Measurements

18

Remote attestation

Service Provider

Challenge: Encrypting client input

Function invocation is a one-shot
message, including (encrypted) input

• Client must encrypt input before knowing
which enclave will run the function

• Cannot rely on service provider to distribute
keys to worker enclaves

SGX Enclave

Function

Measurements

19

Encrypted input

?

Service Provider

Challenge: Measuring time in enclaves

SGX enclave cannot reliably measure its own
running time

• RDTSC value can be manipulated by VMM

• sgx_get_trusted_time() can be arbitrarily delayed

• Enclaves can be transparently interrupted (AEX) and
resumed (ERESUME)

SGX Enclave

Function

Measurements

20

CPU instructions
RDTSC: read timestamp counter
AEX: asynchronous enclave exit
ERESUME: resume enclave

Challenge: Measuring time in enclaves

VERICOUNT:
call sgx_get_trusted_time() at ecall start & end ecall_to_measure()

{
t1 = sgx_get_trusted_time();

.
[function code]

.

.

.

.
t2 = sgx_get_trusted_time();
time = t2 – t1;

}

21

ERESUME

AEXArbitrary
delay

ocallArbitrary
delay

Tople et al., “VeriCount: Verifiable Resource Accounting Using Hardware and Software Isolation”, ACNS 2018

https://doi.org/10.1007/978-3-319-93387-0_34

S-FaaS Architecture

Architecture overview

Worker enclave runs function within
a sandbox
• e.g. Ryoan
• sandboxing interpreters: e.g. for

JavaScript

23

Service Provider

Worker Enclave

Sandbox

Function

Resource
measurement
mechanismsChallenges

C1: Sandboxing
C2: Attesting enclaves
C3: Encrypting input
C4: Measuring time

Hunt et al., “Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data”, OSDI 2016

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt

Key Distribution
Enclave (KDE)

ka+ ko+ kr+

ka- ko- kr-

Architecture overview

24

Service Provider

Worker Enclave

Sandbox

Function

Resource
measurement
mechanisms

Function Provider

Client

ka+ ko+ kr+

ka- ko- kr-

Function provisioning

kc+, {inputs, h(f), want_receipt, nonce}kac

{outputs, nonce, [receipt(I,f,O)]ko-}kac

[measurements, tag]kr-

Attestation

kc-

kc+

ka: enclave’s DH key ko: output key
kc: client’s DH key kr: resource reporting key

Transitive attestation

Clients and function providers attest worker enclaves indirectly

25

Key Distribution
Enclave (KDE)

Worker Enclave

Client / Function
provider

attests

attests

distributes public keys

distributes private keys

Transitive attestation
with key agreement

Challenges
C1: Sandboxing
C2: Attesting enclaves
C3: Encrypting input
C4: Measuring time

Measuring Resource
Usage in SGX

Motivation

FaaS is available from established cloud providers

27

Service Invocations Time (GHz-s) Memory (GB-s) Network (GB)

AWS Lambda X O X

Azure Functions X O X

Google Cloud Functions X X X X

IBM Cloud functions X O X

FaaS billing policies of established cloud providers (X = explicit; O = implicit)

https://aws.amazon.com/lambda/pricing/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://console.bluemix.net/openwhisk/

Types of measurements

28

Symbol Description Units
t Total compute time of the function multiples of Ƭ
Ƭ Duration of each tick in CPU cycles GHz-s
mint Time-integral of memory usage GB-s
mmax Maximum memory used by the function GB
net Total number of network bytes sent and received GB

Measuring compute time

High level idea: two concurrent threads in the enclave (timer & worker)

29

Worker Enclave

worker ecall

ecall return

Timer thread
running a
calibrated

timing loop

Worker thread
running the
sandboxed
function

timer worker

Measuring compute time

High level idea: two concurrent threads in the enclave (timer & worker)

30

Worker Enclave

worker ecall

ecall return

Timer thread
running a
calibrated

timing loop

Worker thread
running the
sandboxed
function

How to detect interrupts?

How to resume
from interrupts?

timer workerHow to ensure worker
thread has started?

SSA stack

Regs
RIP

Intel SGX internals

31

Enclave
ecall

CPU Registers

RAX

RBX

… …

RSP

RIP

TCS

Stage Free

CSSA AEX

ERESUME

TCS

Stage Busy

CSSA
0xff…

0xff…

Enclave data structures
TCS: Thread Control Structure
(C)SSA: (Current) Save State Area

CPU Registers
RIP: Instruction Pointer
RSP: Stack Pointer

Intel Transactional Synchronization Extensions (TSX)

Special instructions enabling Hardware Lock Elision (HLE)

Read set
• Memory addresses read by the transaction (added upon access)
• Transaction will abort if address is concurrently written

Write set
• Memory addresses written by the transaction
• Transaction will abort if address is concurrently read

Roll-back
• All operations since the beginning of the transaction are reverted

32

Starting a function

33

timer ecall

Worker Enclave

worker ecall

1. Acquire mutex
2. Wait on worker

4. Notify timer, processing := true
3. Set SSA marker

5. Start TSX txn 5. Run function

SSA stack

Marker 0x12…

timer worker

Timer thread algorithm

while(processing == true) {
XBEGIN // begin TSX txn
if(worker.ssa == marker) // add worker.ssa to txn read set
{

for(i=0; i<LOOP_COUNT; i++) // LOOP_COUNT depends on Ƭ
nop;

t_internal++;
}
XEND // end TSX txn
t_external = t_internal // update external counter

}

34

Worker thread interrupted

35

timer

Worker Enclave

1. CPU save registers in SSA
2. Abort TSX txn

worker

AEX

3. Modify saved RIP
to custom handler

SSA stack

Regs
RIP

0x00…
0x89…

Worker thread resumed

36

timer

Worker Enclave

1. CPU save registers in SSA
worker

AEX

ERESUME

4. Custom ERESUME handler
restores SSA marker5. Start TSX txn

SSA stack

Marker 0x12..

2. Abort TSX txn

3. Modify saved RIP
to custom handler

Custom ERESUME handler

.text

.globl custom_eresume_handler

.type custom_eresume_handler,@function
custom_eresume_handler:

push %rax # Save registers
push %rbx
lea g_worker_ssa_gpr(%rip),%rax # Load pointer
mov (%rax),%rbx # Dereference pointer
movl $12345,(%rbx) # Write SSA marker value
pop %rbx # Restore registers
pop %rax
jmp *g_original_ssa_rip(%rip) # Resume execution

37

Completing a function

38

Worker Enclave

ecall return

timer

1. Function completes
worker

2. processing := false
3. Stop timing

4. Read time

5. Return outputs and
resource measurements

Measuring Memory and Networking

Memory
• Instrumented allocators used by interpreter
• Measurements updated on every allocation/free

Network
• Payloads measured inside enclave

39

mint Time-integral of memory usage
mmax Maximum memory used by the function

Integration with
OpenWhisk

Integration with OpenWhisk

41

Docker containers

https://openwhisk.apache.org/documentation.html

S-FaaS Docker
containers

Proof-of-concept using Duktape JavaScript
interpreter in worker enclave

S-FaaS Enclave Service

Worker
enclaves

Key
distribution
enclave(s)

https://openwhisk.apache.org/documentation.html

Evaluation

Evaluation: Accuracy

Synthetic function with well-defined compute and memory requirements
• fibonacci(k) calculates the first k numbers in the Fibonacci sequence

Compute time
• Expected to be linear in k
• Can be compared with measurement outside the enclave

Memory time-integral
• Expected to be quadratic in k (k-element list pre-allocated at start of function)
• Harder to measure outside enclave

43

Evaluation: Accuracy

44

Evaluation: Accuracy

45

Evaluation: Performance

Pre-function latency
• Measure cold-start and warm-start latency
• Tested using an empty function to isolate pre-function latency
• Baseline: equivalent operation (same interpreter) without SGX

Resource measurement overhead
• Measure overhead of S-FaaS resource measurement mechanisms
• Octane JavaScript benchmarks (excluding graphical tests)
• Baseline: equivalent operation without resource measurement

Benchmark environment
• Core i5-6500, 8GB RAM, Ubuntu 16.04, Intel SGX SDK 2.2.1

46

https://chromium.github.io/octane/

Evaluation: Pre-function latency

Cold-start
1. Create Docker container
2. Create enclave
3. Provision function
4. Perform key-agreement
5. Return empty response

Baseline: 3179 ms (σ = 40 ms)
S-FaaS: 3249 ms (σ = 38 ms)
Latency increase: ~2%

Warm-start
1. Create Docker container
2. Create enclave
3. Provision function
4. Perform key-agreement
5. Return empty response

Baseline: 204 ms (σ = 106 ms)
S-FaaS: 210 ms (σ = 149 ms)
Latency increase: ~3%

47

Evaluation: Resource measurement overhead

48

Function Baseline S-FaaS

No encryption Encryption Encryption &
receipt

Box2D 3.019 3.118 3.3% 3.121 3.4% 3.135 3.8%

DeltaBlue 1.446 1.524 5.4% 1.529 5.7% 1.537 6.3%

NavierStokes 4.155 4.418 6.3% 4.447 7.0% 4.473 7.7%

RayTrace 0.779 0.848 8.9% 0.850 9.1% 0.852 9.4%

Richards 1.719 1.767 2.8% 1.767 2.8% 1.799 4.7%

Overall - 5.3% 5.6% 6.3%

Trade-offs and limitations

Need for an additional thread
• State-of-the-art SGX side-channel defences(*) require control of both sibling hyperthreads

Timing granularity
• Choice of Ƭ affects extent of under- or over-reporting
• S-FaaS service providers can specify Ƭ for each function

Architecture-specific calibration
• Timing loop must be calibrated for different CPU architectures

49

(*) SGX side-channel defenses:
Cloak: Gruss et al., “Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory”, Usenix SEC 2017
HyperRace: Chen et al., “Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races”, IEEE S&P 2018
Varys: Oleksenko et al., “Varys: Protecting SGX enclaves from practical side-channel attacks”, Usenix ATC 2018

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-gruss.pdf
https://doi.org/10.1109/SP.2018.00024
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf

Suggested SGX enhancements

Secure tick counter
• Provide a trustworthy tick counter that can be accessed without leaving the enclave

Custom ERESUME handlers
• Allow enclaves to specify an in-enclave handler to be called on each ERESUME
• Could also be used to detect frequent AEX events indicative of side-channel attacks

50

Integration with distributed systems

Smart contracts to pay for outsourced computation
• S-FaaS function receipts and resource measurements can be verified in smart contracts
• Straight-forward integration with payment networks

- Particularly beneficial to non-traditional service providers

Leader election based on useful work
• Similar to Resource-Efficient Mining for Blockchains (Zhang et al.)
• Uses “useful computation” to determine who mines next block

51
Zhang et al., “REM: Resource-Efficient Mining for Blockchains”, Usenix SEC 2017

https://eprint.iacr.org/2017/179.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang

Deployment considerations

Incremental deployment
• Initially, S-FaaS requires no changes on client-side (no client attestation or encryption)
• Clients can individually start to verify attestation and/or encrypt inputs

Implementations with other TEEs
• S-FaaS could be ported to e.g. ARM TrustZone
• TrustZone secure world still requires functions to run in a suitable sandbox, but timing would be

simpler because secure world cannot be arbitrarily paused

52

Conclusions

FaaS increasingly popular with cloud providers and non-traditional service providers
• Requires strong security: data confidentiality and integrity of computation
• Requires accurate and trustworthy resource consumption measurement

S-FaaS demonstrates how to secure current FaaS architectures using Intel SGX
• ACM CCS Cloud Computing Workshop 2019 https://ccsw.io/

Code available on GitHub

53

https://asokan.org/asokan/research/

https://github.com/SSGAalto/sfaas

https://ccsw.io/
https://asokan.org/asokan/research/
https://github.com/SSGAalto/sfaas

55

What if SGX is broken?

Back to current state of FaaS security and resource measurement
• TEEs useful in two kinds of settings:

1. improving security
2. improving other attributes while preserving security
S-FaaS is Type 1. TEE compromise is a bigger concern in Type 2

• Application-specific ways of detecting / mitigating effects of TEE compromise, e.g.,
• post-mortem auditing of signed receipts
• statistical mechanisms like in PoET and Zhang et. al.

56

	Trustworthy & Accountable Function-as-a-Service
	Function-as-a-Service (FaaS)
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	System Model & Requirements
	System model
	Adversary model
	Requirements
	Trusted Execution Environments
	Hardware-assisted TEEs are pervasive
	Background: Intel SGX
	Preliminary design
	Design Challenges
	Challenge: Sandboxing untrusted functions
	Challenge: Attesting worker enclaves
	Challenge: Encrypting client input
	Challenge: Measuring time in enclaves
	Challenge: Measuring time in enclaves
	S-FaaS Architecture
	Architecture overview
	Architecture overview
	Transitive attestation
	Measuring Resource Usage in SGX
	Motivation
	Types of measurements
	Measuring compute time
	Measuring compute time
	Intel SGX internals
	Intel Transactional Synchronization Extensions (TSX)
	Starting a function
	Timer thread algorithm
	Worker thread interrupted
	Worker thread resumed
	Custom ERESUME handler
	Completing a function
	Measuring Memory and Networking
	Integration with OpenWhisk
	Integration with OpenWhisk
	Evaluation
	Evaluation: Accuracy
	Evaluation: Accuracy
	Evaluation: Accuracy
	Evaluation: Performance
	Evaluation: Pre-function latency
	Evaluation: Resource measurement overhead
	Trade-offs and limitations
	Suggested SGX enhancements
	Integration with distributed systems
	Deployment considerations
	Conclusions
	Slide Number 55
	What if SGX is broken?

