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What we will learn today

Why worry about security and privacy of machine learning (ML) applications?

What is an example of applying ML to a security/privacy problem?

[From a security/privacy perspective, what to watch out for when applying ML?]
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How do you evaluate ML-based systems?

Effectiveness of inference
• accuracy/score measures on held-out test set?

Performance
• inference speed and memory consumption?

Hardware/software requirements
• e.g. memory/processor limitations, or specific software library?
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Security & Privacy?

Meeting requirements in the
presence of an adversary

4
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Machine learning pipeline

entities
components

Legend

Pre-
processor Trainer Model

Inference 
Service 
Provider

Data owners Clients
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Adversarial behaviour

Different concerns arise depending on
• Who is the adversary?

• resources, capabilities, goals
• What is its target? 

• model, training data, input/output for predictions
• What property does it wants to compromise?

• e.g., confidentiality, integrity

6
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External adversaries

Standard security mechanisms can protect against external adversaries
• Authentication, integrity, confidentiality

Pre-
processor Trainer Model

Inference 
Service 
Provider

Data owners Clients
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1. Malicious data owners

[1] https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
[2] https://wikipedia.org/wiki/Naive_Bayes_spam_filtering#Disadvantages 8

Attack target Risk Remedies
Model (integrity) Data poisoning [1, 2] Access control

Robust estimators
Active learning (human-in-the-loop learning)
Outlier removal / normality models

Pre-
processor Trainer Model

Inference 
Service 
Provider

Data owners Clients

https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
https://wikipedia.org/wiki/Naive_Bayes_spam_filtering#Disadvantages
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2. Malicious pre-processor

9

Attack target Risk Remedies
Model (integrity) Data poisoning Access control

Robust estimators
Active learning (human-in-the-loop learning)
Outlier removal / normality models

Training data 
(confidentiality)

Unauthorized data use
(e.g. profiling)

Adding noise (e.g. differential privacy) [1]
Oblivious aggregation (e.g., homomorphic 
encryption) 

Pre-
processor Trainer Model

Inference 
Service 
Provider

Data owners Clients

[1] Heikkila et al. ”Differentially Private Bayesian Learning on Distributed Data”, NIPS’17

https://arxiv.org/abs/1703.01106
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3. Malicious model trainer
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Attack target Risk Remedies
Training data 
(confidentiality)

Unauthorized data use
(e.g. profiling)

Oblivious training (learning with encrypted data) [1]

Pre-
processor Trainer Model

Inference 
Service 
Provider

Data owners Clients

[1] Graepel et al. “ML Confidential”, ICISC’12 

https://eprint.iacr.org/2012/323.pdf
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4. Malicious inference service provider

Attack target Risk Remedies
Inference
queries/results
(confidentiality)

Unauthorized data use
(e.g. profiling)

Oblivious inference [1,2,3]

[1] Gilad-Bachrach et al. “CryptoNets”, ICML’16
[2] Mohassel et al. “SecureML”, IEEE S&P’17
[3] Liu et al. “MiniONN”, ACM CCS’17

Pre-
processor Trainer Model

Inference 
Service 
Provider

Data owners Clients

http://proceedings.mlr.press/v48/gilad-bachrach16.pdf
http://ieeexplore.ieee.org/document/7958569
https://eprint.iacr.org/2017/452


12

5. Malicious client
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Attack target Risk Remedies
Training data 
(confidentiality)

Membership inference
Model inversion

Minimize information leakage in responses
Differential privacy

Model (confidentiality) Model theft [1] Minimize information leakage in responses
Normality model for client queries
Adaptive responses to client requestsModel (integrity) Model evasion [2]

Pre-
processor Trainer Model

Inference 
Service 
Provider

Data owners Clients

[1] Tramer et al, “Stealing ML models via prediction APIs”, UsenixSEC’16
[2] Dang et al, “Evading Classifiers by Morphing in the Dark”, CCS’17

https://arxiv.org/abs/1609.02943
https://arxiv.org/abs/1705.07535


Fast client-side phishing detection
A case-study in applying machine learning to solve security/privacy problems

N. Asokan
(joint work with Samuel Marchal, Giovanni Armano, Kalle Saari, Tommi Gröndahl, Nidhi Singh)
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Phishing webpages

Phishing webpage (phish) Legitimate webpage
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State of the art in phishing detection

Centralized black lists
• vulnerability to “dynamic phishing”: content depends on client
• Update time lag
• threat to user privacy

Application of machine learning
• may not have “temporal resilience”: accuracy degrading with time

…
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Using ML to identify phishing websites

Data points:
• Webpage contents

Labels: 
• “phish”, “not phish”

Features:
(think about the adversary)

16
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Data sources on a webpage

Starting URL
Landing URL
Redirection chain
Logged links
HTML source code:
• Text
• Title
• HREF links
• Copyright

internal

external
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Phisher’s control & constraints

Data sources differ in terms of the levels of
• control the phisher has over a source
• constraints placed on the phisher in manipulating that source
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URL Structure

https://www.amazon.co.uk/ap/signin?_encoding=UTF8
• Protocol = https
• Registered domain name (RDN) = amazon.co.uk
• Main level domain (mld) = amazon
• FreeURL = {www, /ap/signin?_encoding=UTF8}

protocol://[subdomains.]mld.ps[/path][?query]

FreeURL
Registered

Domain Name FreeURL
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Phisher’s control & constraints

Control:
• External loaded content (logged links) and external HREF links are usually not 

controlled by page owner.

Constraints:
• Registered domain name part of URL cannot be freely defined: constrained by DNS 

registration policies. 
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Conjectures

Improve phish detection by modeling control/constraints
• generalizable, language independent, hard to circumvent

Identity target of phish by analyzing terms in data sources 
• guide users where they really intended to go
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Data sources: control & constraints

Unconstrained Constrained

Controlled Text
Title
Copyright
Internal FreeURL (2)

Internal RDNs (2)

Uncontrolled External FreeURL (2) External RDNs (2)
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Feature selection

A small set (212) of features computed from data sources:
• URL features (106): e.g., # of dots in FreeURL
• Consistency features (101)
• Webpage content (5): e.g., # of characters in Text

Features not data-driven: e.g., no bag-of-words features
• Conjecture: can lead to language-independence, temporal resilience
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Consistency features

Term usage (66)
• strings of 3 or more characters, separated by standard delimiters

Usage of “Main level domain” (mld) from starting/landing URLs (32)

“Registered domain name” usage (RDN) (13)
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Term usage consistency

Dtitle = 
{(log,0.25);(your,0.25);(paypal,0.25);(account,0.25)}

Title: “Log in to your PayPal account” RDN: paypal.com

Dstartrdn = 
{(paypal,1)}

f = H(Dtitle , Dstartrdn) =
0.25 + 0.25 + ( 0.25 − 1)2+ 0.25

2
= 0.71

Hellinger distance
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Classification
Decision trees:

• Easier understanding of the decision process (intelligibility)
• Ability to learn from little training data
• Good performance with a small feature set
• No need for data normalization 

Gradient Boosting (ensemble learning):
• Resilient to adversarial inference of model parameters
• Likelihood to belong to a class (score from individual learners) // no hard decision 

(good for tuning the decision)

Fast decision
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Target identification

Identify terms representing the service/brand: keyterms
Assumption: keyterms appear in several data sources

Query search engine with top keyterms:
• Website appears in top search results → legitimate
• Else, phish; top search results ~ potential targets of phishing

Intersect sets of terms extracted from different 
visible data sources (title, text, starting/landing 
URL, Copyright, HREF links)
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Off-the-Hook anti-phishing system
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Off-the-Hook browser add-on

Client-side implementation
• Preserves user privacy
• Resists dynamic phishing

Multi-browser / Cross platform
• Chrome*, Firefox
• Windows (>= 8), Mac OSX (>= 10.8), Ubuntu (>= 12.04)
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Off-the-Hook warning

Skip to Off-the-Hook summary
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Evaluation

Classifier Training: 
• 8,500 legitimate webpages (English)
• 1,500 phishing webpages (taken from PhishTank & manually verified)

Evaluation:
• Legitimate webpages:

- 100,000 English
- 20,000 each in French, German, Italian, Portuguese and Spanish

• 2,000 phishing webpages (PhishTank; manually verified)

Skip to Off-the-Hook summary
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Classification accuracy

ROC Curve Precision vs. Recall

200,000 multi-lingual legit
/ 2,000 phishs

(≈ real world distribution)

Precision Recall FP Rate AUC Accuracy
0.975 0.951 0.0008 0.999 0.999

Skip to Off-the-Hook summary
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Classification accuracy over time

Model trained:
• September 2015

Applied on phishs:
• January – June 2016
• ~2500 fresh, verified 

phishtank entries 

Skip to Off-the-Hook summary
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Comparison: effectiveness

FPR Precision Recall Accuracy
Cantina (CMU) 0.03 0.212 0.89 0.969
Cantina+ (CMU) 0.013 0.964 0.955 0.97
Ma et al. (UCSD) 0.001 0.998 0.924 0.955
Whittaker et al. (Google) 0.0001 0.989 0.915 0.999
Monarch (UCB) 0.003 0.961 0.734 0.866
Off-the-Hook 0.0008 0.975 0.951 0.999

Skip to Off-the-Hook summary

https://doi.org/10.1145/1242572.1242659
https://doi.org/10.1145/2019599.2019606
https://doi.org/10.1145/1557019.1557153
http://www.internetsociety.org/doc/large-scale-automatic-classification-phishing-pages
https://doi.org/10.1109/SP.2011.25
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Comparison: dataset sizes

Training Testing
Cantina (CMU) - 2,119
Cantina+ (CMU) 2062 884
Ma et al. (UCSD) 17,750 17,750
Whittaker et al. (Google) 9,388,395 1,516,076
Monarch (UCB) 750,000 250,000
Off-the-Hook 10,000 202,000

https://doi.org/10.1145/1242572.1242659
https://doi.org/10.1145/2019599.2019606
https://doi.org/10.1145/1557019.1557153
http://www.internetsociety.org/doc/large-scale-automatic-classification-phishing-pages
https://doi.org/10.1109/SP.2011.25
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Off-the-Hook summary

Off-the-Hook phishing website detection system:
• Exhibits language independence
• Resists dynamic phishing
• Fast:  < 0.5 second per webpage (average for all webpages)
• Accurate: > 99.9% accuracy with < 0.1% false positives

Target identification system:
• Fast: < 2 seconds per webpage
• Success rate: > 90% (1 target); 97.3% (set of three potential targets)

https://ssg.aalto.fi/projects/phishing/

[MSSA16] Know Your Phish: Novel Techniques for Detecting Phishing Sites and their Targets, ICDCS 2016
[AMA16] Real-Time Client-Side Phishing Prevention Add-On, ICDCS 2016
[MAGSSA17] Off-the-Hook: An Efficient and Usable Client-Side Phishing Prevention Application, IEEE Trans. Comput., 2017

Skip to conclusions

https://ssg.aalto.fi/projects/phishing/
https://doi.org/10.1109/ICDCS.2016.10
https://doi.org/10.1109/ICDCS.2016.44
http://ieeexplore.ieee.org/document/7926371/


Pitfalls in using ML 
(for security)
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Adversaries will circumvent detection

The ML model is intended to detect/counter attacks
Adversary will attempt to circumvent detection:

• poison learning process
• infer detection model
• mislead classifier

In Off-the-Hook:
• Modeling constraints and controls while training
• Adversary can control External RDNs! 

Resistance to adversaries
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Privacy concerns are multilateral

Data used for ML may be sensitive
• Sensitive information about users in

- training data → model inversion, membership inference
- prediction process → user profiling, e.g., in a cloud setting (ML-as-a-service)

In Off-the-Hook:
• Client-side classifier to avoid disclosure of URLs
• But model stealing may be a concern
• Better alternatives like “MiniONN”

• Allows converting any neural network to an “oblivious” variant

Multilateral privacy guarantees

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=54119040

Skip to conclusions

https://eprint.iacr.org/2017/452
https://en.wikipedia.org/w/index.php?curid=54119040
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Classification landscapes are dynamic

Attacks evolve fast
Prediction instances likely differ from training instances

• E.g., Android malware evolves due to for changes in API

In Off-the-Hook:
• Avoidance of data-driven features
• Models that allow inexpensive retraining

Temporal resilience
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Maintaining labels is expensive

More training data is good; but unbalanced classes typical
Data about malicious behavior difficult to obtain

• Labeling is cumbersome, requires expertise, may be inaccurate or may evolve (e.g. 
phishing URLs)

In Off-the-Hook:
• Manage with small training sets
• Minimize ratio of training set size to test size

Minimal training data
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Predictions need to be intelligible

Ability of humans to understand why a prediction occurs
• Detection as malicious → forensic analysis
• Explain predictions to users, e.g. why access is prevented
• “Explainability” obligations under privacy regulations like GDPR

In Off-the-Hook:
• Small set of “meaningful” features
• Use of (ensemble of) shallow decision trees

Transparent decision process
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ML failures can harm user experience

Security is usually a secondary goal
Use of ML must not negatively impact usability

• Decision process should be efficient
• Wrong predictions may have a significant usability cost 

In Off-the-Hook: 
• Prediction effectiveness and speed
• In phishing detection, one false positive may be one too much!

Lightweight and accurate
Skip to conclusions
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Security/privacy applications: desiderata

Circumvention resistance
• Resistance to adversaries

Temporal resilience
• Resilience in dynamic environments

Minimality
• Use of minimal training data

Privacy
• Model privacy, training set privacy, and input/output privacy

Intelligibility
• Transparent decision process

Effectiveness
• Lightweight, accurate models
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Did you learn:

Why worry about security and privacy of machine learning (ML) applications?

What is an example of applying ML to a security/privacy problem?

[From a security/privacy perspective, what to watch out for when applying ML?]

http://asokan.org/asokan/

@nasokan on twitter
Acknowledgements: Mika Juuti and Samuel Marchal contributed to making this presentation.

http://asokan.org/asokan/
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