A! WATERLOO

Aalto University

Hardware-assisted Trusted
Execution Environments

Look Back, Look Ahead

N. Asokan

@ https://asokan.org/asokan/
¥ @nasokan

https://asokan.org/asokan/
https://twitter.com/nasokan

Hardware-assisted TEEs are pervasive

-

\ Hardware support for
Trusted - |Isolated execution: Isolated Execution Environment

SOUTENE - Protected storage: Sealing
- Ability to convince remote verifiers: (Remote) Attestation

Protected
Storage Trusted Execution Environments (TEES)

rating in parallel with “rich ex lon environments” (REE
\ S — / Operating in parallel wit ch execution e onments” (S)

Other
Software

Cryptocards Trusted Platform Modules ARM TrustZone Intel Software Guard Extensions
a I m (. t ’l ®
https://www.ibm.com/security/cryptocards/ https://www.infineon.com/tpm https://www.arm.com/products/security-on-arm/trustzone https://software.intel.com/en-us/sgx

[A+14] “Mobile Trusted Computing”, Proceedings of the IEEE, 102(8) (2014)
[EKA14] “Untapped potential of trusted execution environments”, IEEE S&P Magazine, 12:04 (2014)

https://www.ibm.com/security/cryptocards/
https://www.infineon.com/tpm
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone
https://doi.org/10.1109/JPROC.2014.2332007
https://doi.org/10.1109/MSP.2014.38

Concerns with TEEs: flaws

TPM Reset Attack

50,012 views:

: Evan Sparks

Published on Jun 18, 2007

. . CLKSCREW: Exposing the Perils of Security-Oblivious
A demonstration of a vulnerability in the TCG arch
running TPM without restarting the platform. E ne rgy M an ageme nt

http://www.cs.dartmouth.edu/~pkilab/sparks/ (2007)

Authors:
Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo, Columbia University
Distinguished Paper Award Winner!

https://www.usenix.org/conference/usenixsecurityl7/technical-sessions/presentation/tang (2017)

Foreshadow (security vulnerability)

From Wikipedia, the free encyclopedia

This article is about the security vulnerability. For other uses, see Foreshadow (disambiguation)

Foreshadow is a vulnerability that affects modern microprocessors that was first discovered by two independent teams of researchers in January 2018, but was first disclesed to the public on 14 August ~ \
2015 MIZIBASIEITEISIEIN2AN31411518] The yulnerability is a speculative execution attack on Intel processors that may result in the loss of sensitive information stored in personal computers, or third party clouds.[] There are two versions:
the first version (original/Foreshadow) (CVE-2018-3615¢7) targets data from SGX enclaves; and the second version (next-generation/Foreshadow-NG | M) (CVE-2018-36201% and CVE-2013-3646) targels Viriual Machines (VMs), hypervisors A
(VMM), operating system (OS) kernel memory, and System Management Mode (SWM) memory. [l Intel considers the entire class of speculative execution side channel vulnerabilities as “L1 Terminal Fault' (L1TF).['] A listing of affected Intel
hardware has been posted [10111] e
Foreshadow is similar to the Spectre security vulnerabilities discovered earlier to affect Intel and AMD chips, and the Meltdown vulnerability that also affected Intel. '] However, AMD products. according to AMD, are not affected by the ¢
Foreshadow security flaws.[®! According to one expert, "[Foreshadow] lets malicious software break into secure areas that even the Specire and Meltdown flaws couldn’t crack” ['®! Nonetheless, one of the variants of Foreshadow goes beyond FORESHADOW
Intel chips with SGX technology. and affects "all [Intel] Core processors built over the last seven years" 2] A logo created forthe &
. B) B . . . vulnerability, featuring a
Foreshadow may be very difficult to exploit 5] and there seems to be no evidence to date (15 August 2018) of any serious hacking involving the Foreshadow vulnerabilities [21€] Nevertheless, applying software patches may help alleviate lock with @ shadow (CCS 2019)

some concern(s), although the balance between security and performance may be a worthy consideration.®] Companies performing cloud computing may see a significant decrease in their overall computing power; individuals, however, may
not likely see any performance impact, according to researchers ¥ The real fix, according to Intel, is by replacing today's processors [Intel further states, "These changes begin with our next-generation Intel Xeon Scalable processors (code-

_ raziraen oo tEn 3
https://en.wikipedia.org/wiki/Foreshadow_(security vulnerability) (2018)

http://www.cs.dartmouth.edu/%7Epkilab/sparks/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://en.wikipedia.org/wiki/Foreshadow_(security_vulnerability)
https://zombieloadattack.com/
https://mdsattacks.com/

Concerns with TEES: suspicions of motives

Software

MS Palladium protects IT vendors, not
you - paper

Anderson gives us the FAQs

By John Lettice 28 Jun 2002 at 10:27 SHARE ¥

https://www.theregister.co.uk/2002/06/28/ms_palladium_protects it vendors/ (2002)

Trusting Intel — Next Generation of Backdooring?

We have seen that SGX offers a number of attractive functionality

Problem: Third-party uncertainty about your

software environment is normally a feature, not a

bug

that could potentially make our digital systems more secure and https://www.eff.org/wp/trusted-computing-promise-and-risk (2003)

3rd party servers more trusted. But does it really?

The obvious question, especially in the light of recent revelations
about NSA backdooring everything and the kitchen sink, is whether
Intel will have backdoors allowing "privileged entities” to bypass
SGX protections?

http://theinvisiblethings.blogspot.fi/2013/09/thoughts-on-intels-upcoming-software.html (2013)

https://www.eff.org/wp/trusted-computing-promise-and-risk
https://www.theregister.co.uk/2002/06/28/ms_palladium_protects_it_vendors/
http://theinvisiblethings.blogspot.fi/2013/09/thoughts-on-intels-upcoming-software.html

Outline

A Look Back: How did TEEs start?

What are some (useful) applications for TEES?

What are the downsides of relying on hardware-assisted TEES?
(How) can we deal with these downsides?

What are other examples of hardware-assisted security?

. ook Back

Platform security for mobile devices

/Mobile network operators:)
1. Subsidy locks — immutable ID
2. Copy protection — device authentication, app. separation

/Regulators:
1. RF type approval — secure storage
2. Theft deterrence — immutable 1D

iy > B

1. Reliability — app. separation

/End users:

ﬁ

2. Theft deterrence — immutable ID

3. Privacy — app. separation /

o &

Closed —» Open

Different Expectations than for PCs!

7

~

Early adoption of software platform security

~2001 ~2004 ~2008

\ | |
-) Symbian OS)
&j platform Seeurtiy H > Mobile software platform

security is now widely deployed

[KREA11] “Old, new borrowed, blue: a perspective on the evolution of mobile platform security architectures”, ACM CODASPY (2011)

8

http://doi.acm.org/10.1145/1943513.1943517

Example: regulatory compliance

Mobile Telephones (Re-programming) Act 2002

2002 CHAPTER 31

mobile telephone etc.

The IMEI shall not be changed after the ME’s final production process. It shall resist tampering, 1.e. manipulation and
change, by any means (e.g. physical, electrical and software).

NOTE: This requirement is valid for new GSM Phase 2 and Release 96, 97, 98 and 99 MEs type approved after

1°* June 2002.

3GPP TS 42.009, 2001

Secure storage of RF
configuration parameters

N M-Shield e

Mobile
Early TEEs for mobile phones Sl i TrustZonge®
Nokia Radio Application Processor (RAP), ca. 2001 . -

Security Foundation by ARM®

TExAs
IsTRUMENTS

Saara Matala & Thomas Nyman, “Historical insight into the development of Mobile TEESs”, Aalto SSG research group blog (2019)

http://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html

Mobile TEESs: Motivation

https://www.wsj.com/articles/SB893268045342680500

THE WALL STREET JOURNAL

ss

Motorola Announces Plans To Offer Smart-Card Phone

By Kimberley A. StrasselStaiff Reporter of The Wall Street Journal
Updated April 23,1998 1201am ET

LONDON -- Hoping to cash in on one of Europe’s hottest technology markets, Motorola
Corp. announced a new mobile telephone that features a slot for smart cards.

Business requirements:

 mobile payment
e subsidy lock

Regulatory requirements:

 tamper-resistant IMEIs
e secure storage for RF

Engineering constraints:

Cost of discrete security chip
too high on bill of materials!

< r New approach: “processor secure environments”

Generic low-cost enabler emerged as skunkworks project within Nokia
(rather than point solutions for particular use cases)

10

https://www.wsj.com/articles/SB893268045342680500

Mobile TEEs: Development

2004 ARM TrustZone
[AFO4] ‘TrustZone: Integrated Hardware and Software Security”,
Information Quarterly (2004)

2003 Texas Instruments OMAP 161x and 73x processors
[HO3] “OMAP Platform Security Features ”, Whitepaper (2003, updated 2008)

2002 Nokia, Kiiveri and Paatero US9111097B2
“Secure execution architecture”

1996 Intertrust, Ginter et al US 5892900A
“Systems And Methods For Secure Transaction Management And Electronic Rights Protection”

1982 Texas Instruments, Guttag US4521853A
“Secure microprocessor/microcomputer with secured memory”

1982 Texas Instruments, Guttag and Nussarallah US4521853A
“Security bit for designating the security status of information stored in a nonvolatile memory”

11

https://www.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
https://patents.google.com/patent/US4521853A/
https://patents.google.com/patent/US4590552A/
https://patents.google.com/patent/US5892900A/en
https://patents.google.com/patent/US9111097B2/

Mobile TEEs: Deployment

TrustZone @ intel)

Security Foundation by ARM®

First deployment: Nokia 6630 (“Charlie”)
o first 3G phone with TI OMAP 1710 processor (June 2004)

ARM TrustZone currently widely deployed
o TrustZone-M for Cortex-M class microcontrollers (2016)

Ca. 2008, TEE unheard of in academic circles
« first papers in FC 2008, ASIACCS 2009

[AEO8] A Platform for OnBoard Credentials, Financial Cryptography and Data Security (2008)
[KEARO9] On-board credentials with open provisioning, ACM ASIACCS (2009)

Intel SGX
» SkyLake (2015); wide availability of SDK “democratized” TEE research "

https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://link.springer.com/chapter/10.1007/978-3-540-85230-8_31
https://dl.acm.org/citation.cfm?id=1533074

Mobile TEEs: Standardization

REE (Rich Execution Environment)

TEE

MTM / TPM 2.0 ‘
Trusted app Trusted app @"%"@mﬂ’”
APP 2l : TEE Internal API |
@I A TPM API :- ____________ l :_t_ru_st_ed_ l:s;r_in_te_rf_a;e_::- o _b_io_m_et_ri::s_ ST)
o T === A) : |=============.r-============|' GLZBALPLATFORM"®
GLSBALPLATFORM” ! TEE Client API : | _ secureelement i sockets |
__________________________ : TEE management i debug :

IS] . larm
PSA

B ST ' ' TrustZone

| Security Foundation by ARM

13

Using TEES

Original motivations (for mobile TEES)

Tamper-resistant device identifiers (IMEIs)
for various use cases including theft protection, subsidy lock, and DRM

Sealed storage
for secure storage of RFID configuration data

Mobile payments

Boot integrity

15

TEE applications: academic literature (1/2)

Private membership test for malware scanning, private contact discovery,..
[TLPEPA17] “The Circle Game: Scalable Private Membership Test Using Trusted Hardware”, ACM ASIACCS (2017) Signal private contact discovery, Sep 2017

. o his is much faster. The above code stil he entire et of
[KLSAP17] “Private Set Intersection for Unequal Set Sizes with Mobile Applications”, PETS (2017) i 9 much faster, The above code il erates 3cross (e endre set o

registered users, but it only does so once for the entire collection of submitted
client contacts. By keeping one big linear scan over the registered user data set,
access to unencrypted RAM remains “oblivious,” since the OS will simply see the

P r O tectl O n Of p aS SW O rd _b aS ed W e b au t h e n tl C a‘tl O n enclave touch every item once for each contact discovery request.

[KKPMA18] “SafeKeeper: Protecting Web Passwords using Trusted Execution Environments”, WWW (WebConf) (2018) | e fulllinear scanis fairly high latency, but by batching many pending client
requests together, it can be high throughput.

https://signal.org/blog/private-contact-discovery

Secure accounting for function-as-a-service (FaaS) settings
[AAKPS18] “S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel SGX”, ACM CCSW (2019)

Scalable consensus for blockchains and cryptocurrencies

[LLKA19] “Scalable Byzantine Consensus via Hardware-Assisted Secret Sharing”, IEEE Trans. Comp. 68(1) (2018)
[GLVA19] “Making Speculative BET Resilient with Trusted Monotonic Counters”, IEEE SRDS (2019)

Examples only, not a complete list
16

https://doi.org/10.1145/3052973.3053006
https://doi.org/10.1515/popets-2017-0044
https://ssg.aalto.fi/research/projects/passwords/
https://arxiv.org/abs/1810.06080
https://doi.org/10.1109/TC.2018.2860009
https://arxiv.org/abs/1905.10255
https://signal.org/blog/private-contact-discovery

TEE applications: academic literature (2/2)

Private neural network evaluation
[TB19] “Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR (2019)

High-performance remote ORAM

[SGF18] “ZeroTrace: Oblivious Memory Primitives from Intel SGX”, NDSS (2018)

[SS19] “ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments”, PETS (2019)
[HOJY19] “Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset”, PETS (2019)

Verifiable computation
[TZLHJS17] “Sealed-Glass Proofs: Using Transparent Enclaves to Prove and Sell Knowledge”, IEEE EuroS&P (2017)

Authenticated data feeds
[ZCCJS16] “Town Crier: An Authenticated Data Feed for Smart Contracts”, ACM CCS (2016)

Examples only, not a complete list

17

https://arxiv.org/abs/1806.03287
https://eprint.iacr.org/2017/549
https://doi.org/10.2478/popets-2019-0050
https://doi.org/10.2478/popets-2019-0010
https://doi.org/10.1109/EuroSP.2017.28
https://doi.org/10.1145/2976749.2978326

TEE applications: commercial deployments

Digital rights management (e.g. Widevine L1 & L2 content decryption)

Widevine DRM Architecture Overview https://www.androidauthority.com/widevine-explained-821935/

Runtime integrity (e.g. OS kernel integrity monitoring)
[A+14] Samsung TIMA, ACM CCS (2016) https:/doi.org/10.1145/2660267.2660350

Local user authentication (e.g. password authentication, biometrics)

Android Gatekeeper https://source.android.com/security/authentication/gatekeeper
Android Fingerprint HAL https://source.android.com/security/authentication/fingerprint-hal
Windows Hello https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm

Property Attestation (e.g. proof that cryptographic credential is protected by TEE)

Android Key and ID Attestation https://source.android.com/security/keystore/attestation
MirrorLink Content Attestation https://www.etsi.org/deliver/etsi_ts/103500 103599/10354404/01.03.00_60/ts_10354404v010300p.pdf
Also see [KAE11] Practical Property-Based Attestation on Mobile Devices, TRUST (2011)

Examples only, not a complete list

18

https://www.androidauthority.com/widevine-explained-821935/
https://doi.org/10.1145/2660267.2660350
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/fingerprint-hal
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://source.android.com/security/keystore/attestation
https://www.etsi.org/deliver/etsi_ts/103500_103599/10354404/01.03.00_60/ts_10354404v010300p.pdf
https://doi.org/10.1007/978-3-642-21599-5_6

Downsides of TEES

Downsides of TEE-based solutions

Difficulty of developer access

Risk of TEE compromise

20

Difficulty of developer access

TEEs were closed systems
Tools for TEE software development were cumbersome and/or expensive

Device or TEE vendor controls what applications allowed to executed in the TEE
« Ordinary developers cannot deploy TEE apps without vendor approval

21

Risk of TEE compromise

Software attacks
« Many trusted applications are written in unsafe languages
« Correct trusted code can be vulnerable to confused-deputy attacks
 Difficult even for hardware security module vendors [ccig

Side-channel attacks
e Timing
e Memory access
« Electromagnetic emanations

[CC19] “Everybody be Cool, This is a Robbery!”, Black Hat (2019)

22

https://www.blackhat.com/us-19/briefings/schedule/index.html#everybody-be-cool-this-is-a-robbery-16233

Dealing with downsides

Challenge: easy development

GlobalPlatform standards for TEE interfaces
http://www.qglobalplatform.org/specificationsdevice.asp

Open-source tools for TEE app development available:
 OP-TEE https://www.op-tee.org/

 Open-TEE https://open-tee.github.io/

« OpenEnclave https://openenclave.io

Developing TEE applications is no longer cumbersome or expensive

[MDNA15] “Open-TEE — An Open Virtual Trusted Execution Environment”, TRUST (2015)

24

http://www.globalplatform.org/specificationsdevice.asp
https://www.op-tee.org/
https://open-tee.github.io/
https://openenclave.io/
http://arxiv.org/abs/1506.07367

Challenge: open deployment

it

B !i!u 1t

On-board Credentials (ObC) (2006-2009) nE

e open credential platform leveraging TEE functionality —

 allows any developer to write/use TEE apps /’ emsseye. i

« deployed in Nokia and Windows smartphones (2009-2012) m assasasass

 applications: ‘ @ "
- RSA SecurlD, mobile ticketing (trialed at NY MTA LIRR in 2011), even "soft SIM* e

Other efforts to address the deployment hurdle:
» “User centric provisioning” work from Royal Holloway
- E.g., “A Paradigm Shift in Smart Card Ownership Model” (2010)

» GlobalPlatform white paper
- “A New Model: The Consumer-Centric Model and How It Applies to the Mobile Ecosystem” Whitepaper (2012)

[KEARO9] “On-board credentials with open provisioning”, ACM ASIACCS (2009)

25

http://longisland.news12.com/story/34758245/lirr-launches-smartphone-payment-trial
https://doi.org/10.1109/ICCSA.2010.52
https://globalplatform.org/resource-publication/a-new-model-the-consumer-centric-model-and-how-it-applies-to-the-mobile-ecosystem/
https://doi.org/10.1145/1533057.1533074

Challenge: Dealing with TEE compromise

Hardware attacks pose a serious threat
No longer reasonable to assume hardware security to be inviolable

Abandon hardware-assisted TEEs altogether?
Instead rely only on cryptographic techniques like MPC?

TEEs still hold the promise of efficient solutions
Hardware-assistance and cryptography are not mutually exclusive!
Defense-in-depth is desirable
Novel approaches for dealing with TEE compromise may be feasible

26

Challenge: Dealing with TEE compromise

Prevent ‘..

Formal verification
Minimal coupling between TEE and REE

v
_

Tolerate ®
Replication / redundancy
Application-specific mitigation

\

~

7

27

;3 Formal Verification

)

Formal Verification

Formal verification can prevent software vulnerabilities

Good track record with protocol specs and implementations
e TLS 1.3 [cMsvie]
« mMITLS, a formally-verified TLS implementation [BrkPs13]

Applicable to platform security
o sel4, aformally-verified microkernel k+og]
 ProvenCore, ProvenCore-M, commercial formally-verified kernels [L15]

Caveat: Formal analysis is only as good as the underlying model
 sel4 needed to be patched for Meltdown like everything else

[CMSv16] “Automated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed Authentication”, IEEE S&P (2016)
[BFKPS13] “Implementing TLS with Verified Cryptographic Security”, IEEE S&P (2013)

[K+09] “selL4: Formal Verification of an OS Kernel”, ACM SOSP (2009)

[L15] “ProvenCore: Towards a Verified Isolation Micro-Kernel”, MILS (2015)

28

https://docs.sel4.systems/sel4_release/seL4_9.0.0.html
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2013.37
https://doi.org/10.1145/1629575.1629596
http://doi.org/10.5281/zenodo.47990

=5 Minimal Coupling

Recall: TEE system architecture

Device

Rich execution e
environment (REE) Fm-—--—m-——- -

|
1 |
. .
Trusted execution |
App App . I
environment (TEE) | '+ !
TEE AP S !
Trusted || Trusted ;| ! |
app Iapp M| oo
Device OS p——— l-—-—-—-==-111 :
I TEE mgmt. layer : :__u
————————————— 4 1
N N

—>| TEE entry

Hardware and firmware with TEE support

29
Figure adapted from: Global Platform. TEE system architecture. 2011.

http://www.globalplatform.org/specificationsdevice.asp

. . _ . Al Minimal Coupling
TEE hardware realization alternatives e o

SoC : system-on-chip

TEE component OTP: one-time programmable
External Off-chip External Off-chip External Off-chip
Peripheral memory Peripheral Memory Peripheral Memory
t { t ‘ t
On-SoC On-SoC On-SoC
Processor Processor Processor
RAM || ROM core(s) RAM || ROM core(s) RAM || ROM core(s)
T T y § r vy J A 'y
v v \ 4 A 4 \ 4
OoTP Internal OTP Internal OTP Internal
Fields peripherals Fields peripherals Fields peripherals
\ 4
On-chip Security
Subsystem

\ 4

External Security
Co-processor

External Secure Element
(TPM, smartcards)

Embedded Secure Element |Processor Secure Environment
(SGX, TrustZone, M-Shield)

30
Figure adapted from: Global Platform. TEE system architecture. 2011.

http://www.globalplatform.org/specificationsdevice.asp

PN
v
[<

Minimal Coupling

)

Minimal coupling

TEE closely coupled to REE Larger attack surface

Intel SGX

ARM Trustzone .
Greater sharing of resources

(OS services, cache,
memory, processor)

TPM

TEE more isolated from REE Smaller attack surface

31

FUN
v
[<

Minimal Coupling

@

Minimal coupling in the real world

Discrete security processors in modern smartphones

« Apple Secure Enclave Processor (SEP)
Apple, iI0OS Security Whitepaper, May 2019

 Google Titan M

Google Device Security Group, Building a Titan, Android Developers Blog, October 2018

Physical isolation mitigates against entire classes of hardware-level exploits
* Processor, caches, memory, and persistent storage are not shared with main OS

32

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://android-developers.googleblog.com/2018/10/building-titan-better-security-through.html

Layered defense using multiple TEES 1 CT—

Enables division of tasks (and secrets) between two (or more) elements

Improved security for stored secrets
Android Strongbox Keymaster https://developer.android.com/training/articles/keystore#HardwareSecurityModule
SEP Secure Key Store https://support.apple.com/en-us/HT209632

Sensitive peripheral management (e.g. camera LED indicator, microphone disconnect)
SEP camera/microphone hardware control https://www.apple.com/mac/docs/Apple_T2_ Security Chip_Overview.pdf

Trusted path (e.g. isolated circuit to side buttons)
Android Protected Confirmation https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html

Insider attack resistance (e.g. firmware updates require device owner’s cooperation)
Android Insider attack Resistance https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html

33

https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://support.apple.com/en-us/HT209632
https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html

’S" App-specific mitigation

Application-specific mitigation

Premise: Exploiting a hardware compromise may leave tell-tale signs

Approach: Use application-specific domain knowledge for detection or
mitigation of the effects of hardware compromise

34

- i pp-specifc mitgation
Example: Proof of Elapsed Time (PoET)

POET is areplacement for Proof of Work in Bitcoin-like blockchains

Proof of Work:
First miner to solve puzzle wins (gets to proposes next block)

Work ~ Exp (difficulty)

Proposals can be made at a rate proportional to computational power

Proof of Elapsed Time:
TEE issues attestation after waiting (idly) for a while; First miner to get the attestation wins

Idle wait time ~ Exp (difficulty)

Proposals can be made at a rate proportional to the number of idle CPUs

Intel, Hyperledger Sawtooth Documentation, 2015 35

https://www.hyperledger.org/projects/sawtooth

’S" App-specific mitigation

Example: Dealing with TEE compromise

Problem: A compromised TEE can win every block

Probability
Statistical solution: refuse blocks from machines that A

have won too many times

« Before: compromised TEEs give attacker unlimited power Worst-case wins by a
i i compromised TEE.

« After: attacker power proportional to # of compromised TEES

! Design for Failure” Damage control: don“t allow
a TEE to win too many times.
. . . : Wins by an /
Open question: How can TEE-using applications honest TEE _
detect/mitigate effects of TEE-compromise? ~ Wins per

[Intel15] “Hyperledger Sawtooth Documentation” (2015)
[C+174] “On Security Analysis of Proof-of-Elapsed-Time (PoET)”, SSS (2017) 36

https://www.hyperledger.org/projects/sawtooth
https://link.springer.com/chapter/10.1007/978-3-319-69084-1_19

'S" App-specific mitigation

- Frank Piessens (2019)

Cross-layer design for security

Hennessy and Patterson on cross-layer design (for performance):

« “Achieving significant gains through such approaches will require a vertically integrated
design team that understands applications, domain-specific languages and related compiler
technology, computer architecture and organization, and the underlying implementation
technology”

* “Inthis new era, vertical integration has become more important, and teams that can
examine and make complex trade-offs and optimizations will be advantaged”

Such cross-layer design can have similar benefits for security
* Not surprising, as there are often significant trade-offs between security and performance

37

Carrying security information across layers

- Frank Piessens (2019)

Applications may have precise information about what data in the program is
confidential

In state-of-practice compilation, this information is lost

By preserving this information during compilation, we can use it to selectively close
micro-architectural channels used in transient execution attacks

[P+15] “Secure compilation to protected module architectures”, ACM TOPLAS (2015)

[ASIP12] “Secure compilation to modern processors”, CSF (2012)

[N+19] “HardScope: Hardening Embedded Systems Against Data-Oriented Attacks”, ACM DAC (2019)
[LNWPEA19] PAC it up: Towards Pointer Integrity using ARM Pointer Authentication. USENIX Security (2019)

38

https://doi.org/10.1145/2699503
https://doi.org/10.1109/CSF.2012.12
https://doi.org/10.1145/3316781.3317836
https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand

Other types of hardware-
assisted security

Software Attacks against TEEs

ATTACKING YOUR TRUSTED CORE: EXPLOITING PRESENTED BY
TRUSTZONE ON ANDROID Di Shen

For years fingerprint scanning has been supported in many Android devices. Fingerprint

scanning on ARM always needs an implementation of TrustZone. While we enjoy unlocking
devices and paying by fingerprint, we also figure out these new features bring out some new
attack surfaces. Attacking the kernel of Android or the secure world of TrustZone may be not

impossible.

https://www.blackhat.com/us-15/briefings.html#attacking-your-trusted-core-exploiting-trustzone-on-android (2015)

02/05/2016

QSEE privilege escalation vulnerability and exploit (CVE-2015-6639)

In this blog post we'll discover and exploit a vulnerability which will allow us to gain code execution within Qualcomm's Secure Execution Environment
(QSEE). I've responsibly disclosed this vulnerability to Google and it has been fixed - for the exact timeline, see the "Timeline" section below.

https://bits-please.blogspot.com/2016/05/gsee-privilege-escalation-vulnerability.html (2016)

30/06/2016

Extracting Qualcomm's KeyMaster Keys - Breaking Android Full Disk Encryption

After covering a TrustZone kernel vulnerability and exploit in the previous blog post, | thought this time it might be interesting to explore some of the
implications of code-execution within the TrustZone kernel. In this blog post, I'll demonstrate how TrustZone kernel code-execution can be used to

effectively break Android's Full Disk Encryption (FDE) scheme. We'll also see some of the inherent issues stemming from the design of Android's
FDE scheme, even without any TrustZone vulnerability.

https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html (2016)

40

https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
https://www.blackhat.com/us-15/briefings.html#attacking-your-trusted-core-exploiting-trustzone-on-android

Protection against software attacks

Novel hardware architectures
CHERI, fat pointers, ...

Hardware extensions rolled out by processor vendors

X86:

Memory Protection Keys (MPK)
Memory Protection eXtensions (MPX)

ARM:

Pointer Authentication (PA)
Memory Tagging Extensions (MTE)
Branch Target Indication (BTI)

41

How to utilize hardware-security primitives?

New hardware primitives are being rolled out
« Can we efficiently combine them to achieve new security properties?

How do different techniques compare?
* e.g., ARM PA and ShadowsStack achieve similar security for return-address protection?

Understanding can help hardware vendors to choose which mechanisms to deploy

Intel Intel® 64 and IA-32 Architectures Software Developer Manuals (2019)
ARM Armv8.5-A Memory Tagging Extension (2019)

42

https://software.intel.com/en-us/articles/intel-sdm
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf?revision=ef3521b9-322c-4536-a800-5ee35a0e7665&la=en

Forthcoming IEEE SP Special Issue

E I : I E
I H
J h‘ u IEEE Security and Privacy Magazine

- Special Issue on Hardware-assisted Security
mid-to-late 2020

Submissions: Dec 22, 2019
|
e
|| - "l 1
_: - -I-
" Nt "o .

are f..'.-.-"-'

https://computer.org/digital-library/magazines/sp/call-for-papers-special-is urity

43

https://computer.org/digital-library/magazines/sp/call-for-papers-special-issue-on-hardware-assisted-security

Takeaways

TEEs have been around for more than two decades
Dominant design choice informed by cost and usability considerations

Unconditional trust in hardware-TEEs is no longer acceptable
TEEs are still useful: defense-in-depth, novel mitigations for TEE failure possible?

Other hardware-assisted security mechanisms to harden software are emerging

@ https://asokan.org/asokan/ Thanks to my students:

¥ @nasokan Lachlan J. Gunn, Hans Liljestrand, Thomas Nyman

https://asokan.org/asokan/
https://twitter.com/nasokan

Acknowledgments

Icons on Platform security for mobile devices and Dealing with TEE compromise made by those-
icons, freepik, and Good Ware from www.flaticon.com licensed by CC 3.0 BY

Icons on Mobile TEEs: Motivation made by Good Ware from www.flaticon.com licensed by CC 3.0 BY

Nokia 6630 image by JotWu from en.wikipedia.org licensed by CC 3.0 BY
Web icon on title slide from material.io licensed by Apache 2.0

45

https://www.flaticon.com/authors/those-icons
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/good-ware
http://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/
https://www.flaticon.com/authors/good-ware
https://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/
https://pl.wikipedia.org/wiki/Wikipedysta:JotWu
https://en.wikipedia.org/wiki/Nokia_6630#/media/File:Nokia6630.jpg
http://creativecommons.org/licenses/by/3.0/
https://material.io/resources/icons/?search=public&icon=public&style=outline

	Slide Number 1
	Hardware-assisted TEEs are pervasive
	Concerns with TEEs: flaws
	Concerns with TEEs: suspicions of motives
	Outline
	Look Back
	Platform security for mobile devices
	Early adoption of software platform security
	Example: regulatory compliance
	Mobile TEEs: Motivation
	Mobile TEEs: Development
	Mobile TEEs: Deployment
	Mobile TEEs: Standardization
	Using TEEs
	Original motivations (for mobile TEEs)
	TEE applications: academic literature (1/2)
	TEE applications: academic literature (2/2)
	TEE applications: commercial deployments
	Downsides of TEEs
	Downsides of TEE-based solutions
	Difficulty of developer access
	Risk of TEE compromise
	Dealing with downsides
	Challenge: easy development
	Challenge: open deployment
	Challenge: Dealing with TEE compromise
	Challenge: Dealing with TEE compromise
	Formal Verification
	Recall: TEE system architecture
	TEE hardware realization alternatives
	Minimal coupling
	Minimal coupling in the real world
	Layered defense using multiple TEEs
	Application-specific mitigation
	Example: Proof of Elapsed Time (PoET)
	Example: Dealing with TEE compromise
	Cross-layer design for security
	Carrying security information across layers
	Other types of hardware-assisted security
	Software Attacks against TEEs
	Protection against software attacks
	How to utilize hardware-security primitives?
	Forthcoming IEEE SP Special Issue
	Takeaways
	Acknowledgments

