
Hardware-assisted Trusted
Execution Environments
Look Back, Look Ahead
N. Asokan

https://asokan.org/asokan/
@nasokan

https://asokan.org/asokan/
https://twitter.com/nasokan

2

Hardware-assisted TEEs are pervasive

Hardware support for
- Isolated execution: Isolated Execution Environment
- Protected storage: Sealing
- Ability to convince remote verifiers: (Remote) Attestation

Other
Software

Trusted
Software

Protected
Storage

Root of Trust

https://www.ibm.com/security/cryptocards/ https://www.infineon.com/tpm https://software.intel.com/en-us/sgxhttps://www.arm.com/products/security-on-arm/trustzone

Cryptocards Trusted Platform Modules ARM TrustZone Intel Software Guard Extensions

Trusted Execution Environments (TEEs)
Operating in parallel with “rich execution environments” (REEs)

[A+14] “Mobile Trusted Computing”, Proceedings of the IEEE, 102(8) (2014)
[EKA14] “Untapped potential of trusted execution environments”, IEEE S&P Magazine, 12:04 (2014)

https://www.ibm.com/security/cryptocards/
https://www.infineon.com/tpm
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone
https://doi.org/10.1109/JPROC.2014.2332007
https://doi.org/10.1109/MSP.2014.38

3

Concerns with TEEs: flaws

http://www.cs.dartmouth.edu/~pkilab/sparks/ (2007)

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang (2017)

https://en.wikipedia.org/wiki/Foreshadow_(security_vulnerability) (2018)

…

(CCS 2019)

http://www.cs.dartmouth.edu/%7Epkilab/sparks/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://en.wikipedia.org/wiki/Foreshadow_(security_vulnerability)
https://zombieloadattack.com/
https://mdsattacks.com/

4

Concerns with TEEs: suspicions of motives

https://www.eff.org/wp/trusted-computing-promise-and-risk (2003)

https://www.theregister.co.uk/2002/06/28/ms_palladium_protects_it_vendors/ (2002)

http://theinvisiblethings.blogspot.fi/2013/09/thoughts-on-intels-upcoming-software.html (2013)

https://www.eff.org/wp/trusted-computing-promise-and-risk
https://www.theregister.co.uk/2002/06/28/ms_palladium_protects_it_vendors/
http://theinvisiblethings.blogspot.fi/2013/09/thoughts-on-intels-upcoming-software.html

5

Outline

A Look Back: How did TEEs start?

What are some (useful) applications for TEEs?

What are the downsides of relying on hardware-assisted TEEs?

(How) can we deal with these downsides?

What are other examples of hardware-assisted security?

Look Back

7

Platform security for mobile devices
Mobile network operators:
1. Subsidy locks → immutable ID
2. Copy protection → device authentication, app. separation
3. …

Closed → Open

Different Expectations than for PCs!

End users:
1. Reliability → app. separation
2. Theft deterrence → immutable ID
3. Privacy → app. separation
4. ...

Regulators:
1. RF type approval → secure storage
2. Theft deterrence → immutable ID
3. …

8

Early adoption of software platform security

Mobile software platform
security is now widely deployed

~2004~2001 ~2008

[KREA11] “Old, new borrowed, blue: a perspective on the evolution of mobile platform security architectures”, ACM CODASPY (2011)

http://doi.acm.org/10.1145/1943513.1943517

9

Example: regulatory compliance

Secure storage of RF
configuration parameters

3GPP TS 42.009, 2001

Saara Matala & Thomas Nyman, “Historical insight into the development of Mobile TEEs”, Aalto SSG research group blog (2019)

Early TEEs for mobile phones
Nokia Radio Application Processor (RAP), ca. 2001

http://blog.ssg.aalto.fi/2019/06/historical-insight-into-development-of.html

10

Mobile TEEs: Motivation

 New approach: “processor secure environments”

Generic low-cost enabler emerged as skunkworks project within Nokia
(rather than point solutions for particular use cases)

Business requirements:

• mobile payment
• subsidy lock

Regulatory requirements:

• tamper-resistant IMEIs
• secure storage for RF

https://www.wsj.com/articles/SB893268045342680500

Engineering constraints:

Cost of discrete security chip
too high on bill of materials!

https://www.wsj.com/articles/SB893268045342680500

11

Mobile TEEs: Development

1996 200420031982 2002 2008 2015 2016 20192004

2004 ARM TrustZone
[AF04] “TrustZone: Integrated Hardware and Software Security”,
Information Quarterly (2004)

2003

2003 Texas Instruments OMAP 161x and 73x processors
[H03] “OMAP Platform Security Features ”, Whitepaper (2003, updated 2008)

1982

1982 Texas Instruments, Guttag US4521853A
“Secure microprocessor/microcomputer with secured memory”

1982 Texas Instruments, Guttag and Nussarallah US4521853A
“Security bit for designating the security status of information stored in a nonvolatile memory”

1996

1996 Intertrust, Ginter et al US 5892900A
“Systems And Methods For Secure Transaction Management And Electronic Rights Protection”

2002 Nokia, Kiiveri and Paatero US9111097B2
“Secure execution architecture”

2002

https://www.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
https://patents.google.com/patent/US4521853A/
https://patents.google.com/patent/US4590552A/
https://patents.google.com/patent/US5892900A/en
https://patents.google.com/patent/US9111097B2/

12

Mobile TEEs: Deployment

First deployment: Nokia 6630 (“Charlie”)
• first 3G phone with TI OMAP 1710 processor (June 2004)

ARM TrustZone currently widely deployed
• TrustZone-M for Cortex-M class microcontrollers (2016)

Ca. 2008, TEE unheard of in academic circles
• first papers in FC 2008, ASIACCS 2009

[AE08] A Platform for OnBoard Credentials, Financial Cryptography and Data Security (2008)
[KEAR09] On-board credentials with open provisioning, ACM ASIACCS (2009)

Intel SGX
• SkyLake (2015); wide availability of SDK “democratized” TEE research

1996 200420031982 2002 2008 2015 2016 20192004 2008 2015 2016

https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://link.springer.com/chapter/10.1007/978-3-540-85230-8_31
https://dl.acm.org/citation.cfm?id=1533074

13

App

Mobile OS

REE (Rich Execution Environment)

App

Trusted OS

Trusted app

TEE

Mobile TEEs: Standardization

TEE Internal API
trusted user interface

socketssecure element

biometrics

TEE management debug

Device Hardware

Device Firmware PSA

TPM API
TEE Client API

MTM / TPM 2.0
Trusted app

Roots of Trust TEE entry

Using TEEs

15

Original motivations (for mobile TEEs)

Tamper-resistant device identifiers (IMEIs)
for various use cases including theft protection, subsidy lock, and DRM

Sealed storage
for secure storage of RFID configuration data

Mobile payments

Boot integrity

16

TEE applications: academic literature (1/2)

Private membership test for malware scanning
[TLPEPA17] “The Circle Game: Scalable Private Membership Test Using Trusted Hardware”, ACM ASIACCS (2017)
[KLSAP17] “Private Set Intersection for Unequal Set Sizes with Mobile Applications”, PETS (2017)

Protection of password-based web authentication
[KKPMA18] “SafeKeeper: Protecting Web Passwords using Trusted Execution Environments”, WWW (WebConf) (2018)

Secure accounting for function-as-a-service (FaaS) settings
[AAKPS18] “S-FaaS: Trustworthy and Accountable Function-as-a-Service using Intel SGX”, ACM CCSW (2019)

Scalable consensus for blockchains and cryptocurrencies
[LLKA19] “Scalable Byzantine Consensus via Hardware-Assisted Secret Sharing”, IEEE Trans. Comp. 68(1) (2018)
[GLVA19] “Making Speculative BFT Resilient with Trusted Monotonic Counters”, IEEE SRDS (2019)

Examples only, not a complete list

https://signal.org/blog/private-contact-discovery

Signal private contact discovery, Sep 2017
, private contact discovery,..

https://doi.org/10.1145/3052973.3053006
https://doi.org/10.1515/popets-2017-0044
https://ssg.aalto.fi/research/projects/passwords/
https://arxiv.org/abs/1810.06080
https://doi.org/10.1109/TC.2018.2860009
https://arxiv.org/abs/1905.10255
https://signal.org/blog/private-contact-discovery

17

TEE applications: academic literature (2/2)

Private neural network evaluation
[TB19] “Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware”, ICLR (2019)

High-performance remote ORAM
[SGF18] “ZeroTrace: Oblivious Memory Primitives from Intel SGX”, NDSS (2018)
[SS19] “ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments”, PETS (2019)
[HOJY19] “Hardware-Supported ORAM in Effect: Practical Oblivious Search and Update on Very Large Dataset”, PETS (2019)

Verifiable computation
[TZLHJS17] “Sealed-Glass Proofs: Using Transparent Enclaves to Prove and Sell Knowledge”, IEEE EuroS&P (2017)

Authenticated data feeds
[ZCCJS16] “Town Crier: An Authenticated Data Feed for Smart Contracts”, ACM CCS (2016)

Examples only, not a complete list

https://arxiv.org/abs/1806.03287
https://eprint.iacr.org/2017/549
https://doi.org/10.2478/popets-2019-0050
https://doi.org/10.2478/popets-2019-0010
https://doi.org/10.1109/EuroSP.2017.28
https://doi.org/10.1145/2976749.2978326

18

TEE applications: commercial deployments

Digital rights management (e.g. Widevine L1 & L2 content decryption)
Widevine DRM Architecture Overview https://www.androidauthority.com/widevine-explained-821935/

Runtime integrity (e.g. OS kernel integrity monitoring)
[A+14] Samsung TIMA, ACM CCS (2016) https://doi.org/10.1145/2660267.2660350

Local user authentication (e.g. password authentication, biometrics)
Android Gatekeeper https://source.android.com/security/authentication/gatekeeper
Android Fingerprint HAL https://source.android.com/security/authentication/fingerprint-hal
Windows Hello https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm

Property Attestation (e.g. proof that cryptographic credential is protected by TEE)
Android Key and ID Attestation https://source.android.com/security/keystore/attestation
MirrorLink Content Attestation https://www.etsi.org/deliver/etsi_ts/103500_103599/10354404/01.03.00_60/ts_10354404v010300p.pdf

Also see [KAE11] Practical Property-Based Attestation on Mobile Devices, TRUST (2011)

Examples only, not a complete list

https://www.androidauthority.com/widevine-explained-821935/
https://doi.org/10.1145/2660267.2660350
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/fingerprint-hal
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/how-windows-uses-the-tpm
https://source.android.com/security/keystore/attestation
https://www.etsi.org/deliver/etsi_ts/103500_103599/10354404/01.03.00_60/ts_10354404v010300p.pdf
https://doi.org/10.1007/978-3-642-21599-5_6

Downsides of TEEs

20

Downsides of TEE-based solutions

Difficulty of developer access

Risk of TEE compromise

21

Difficulty of developer access

TEEs were closed systems

Tools for TEE software development were cumbersome and/or expensive

Device or TEE vendor controls what applications allowed to executed in the TEE
• Ordinary developers cannot deploy TEE apps without vendor approval

22

Risk of TEE compromise

Software attacks
• Many trusted applications are written in unsafe languages
• Correct trusted code can be vulnerable to confused-deputy attacks
• Difficult even for hardware security module vendors [CC19]

Side-channel attacks
• Timing
• Memory access
• Electromagnetic emanations

[CC19] “Everybody be Cool, This is a Robbery!”, Black Hat (2019)

https://www.blackhat.com/us-19/briefings/schedule/index.html#everybody-be-cool-this-is-a-robbery-16233

Dealing with downsides

24

Challenge: easy development

GlobalPlatform standards for TEE interfaces
http://www.globalplatform.org/specificationsdevice.asp

Open-source tools for TEE app development available:
• OP-TEE https://www.op-tee.org/
• Open-TEE https://open-tee.github.io/
• OpenEnclave https://openenclave.io

Developing TEE applications is no longer cumbersome or expensive

[MDNA15] “Open-TEE – An Open Virtual Trusted Execution Environment”, TRUST (2015)

http://www.globalplatform.org/specificationsdevice.asp
https://www.op-tee.org/
https://open-tee.github.io/
https://openenclave.io/
http://arxiv.org/abs/1506.07367

25

On-board Credentials (ObC) (2006-2009)
• open credential platform leveraging TEE functionality
• allows any developer to write/use TEE apps
• deployed in Nokia and Windows smartphones (2009-2012)
• applications:

- RSA SecurID, mobile ticketing (trialed at NY MTA LIRR in 2011), even "soft SIM“

Other efforts to address the deployment hurdle:
• “User centric provisioning” work from Royal Holloway

- E.g., “A Paradigm Shift in Smart Card Ownership Model” (2010)

• GlobalPlatform white paper
- “A New Model: The Consumer-Centric Model and How It Applies to the Mobile Ecosystem” Whitepaper (2012)

Challenge: open deployment

[KEAR09] “On-board credentials with open provisioning”, ACM ASIACCS (2009)

http://longisland.news12.com/story/34758245/lirr-launches-smartphone-payment-trial
https://doi.org/10.1109/ICCSA.2010.52
https://globalplatform.org/resource-publication/a-new-model-the-consumer-centric-model-and-how-it-applies-to-the-mobile-ecosystem/
https://doi.org/10.1145/1533057.1533074

26

Challenge: Dealing with TEE compromise

Hardware attacks pose a serious threat
No longer reasonable to assume hardware security to be inviolable

Abandon hardware-assisted TEEs altogether?
Instead rely only on cryptographic techniques like MPC?

TEEs still hold the promise of efficient solutions
Hardware-assistance and cryptography are not mutually exclusive!
Defense-in-depth is desirable
Novel approaches for dealing with TEE compromise may be feasible

27

Challenge: Dealing with TEE compromise

Prevent
Formal verification
Minimal coupling between TEE and REE

Tolerate
Replication / redundancy
Application-specific mitigation

28

Formal Verification
Formal verification can prevent software vulnerabilities

Good track record with protocol specs and implementations
• TLS 1.3 [CMSv16]

• miTLS, a formally-verified TLS implementation [BFKPS13]

Applicable to platform security
• seL4, a formally-verified microkernel [K+09]

• ProvenCore, ProvenCore-M, commercial formally-verified kernels [L15]

Caveat: Formal analysis is only as good as the underlying model
• seL4 needed to be patched for Meltdown like everything else

[CMSv16] “Automated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed Authentication”, IEEE S&P (2016)
[BFKPS13] “Implementing TLS with Verified Cryptographic Security”, IEEE S&P (2013)
[K+09] “seL4: Formal Verification of an OS Kernel”, ACM SOSP (2009)
[L15] “ProvenCore: Towards a Verified Isolation Micro-Kernel”, MILS (2015)

Formal Verification

https://docs.sel4.systems/sel4_release/seL4_9.0.0.html
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2013.37
https://doi.org/10.1145/1629575.1629596
http://doi.org/10.5281/zenodo.47990

29

Device

App

Device OS

Rich execution
environment (REE)

App

TEE mgmt. layer

Trusted
app

Trusted
app

TEE API

Trusted execution
environment (TEE)

Hardware and firmware with TEE support

Figure adapted from: Global Platform. TEE system architecture. 2011.

TEE entry

Recall: TEE system architecture
Minimal Coupling

http://www.globalplatform.org/specificationsdevice.asp

30

Legend:
SoC : system-on-chip
OTP: one-time programmable

TEE hardware realization alternatives

Figure adapted from: Global Platform. TEE system architecture. 2011.

External Security
Co-processor

External Secure Element
(TPM, smartcards)

TEE component

On-SoC

RAM ROM

OTP
Fields

External
Peripheral

s

Processor
core(s)

Off-chip
memory

Internal
peripherals

RAM ROM

OTP
Fields

External
Peripheral

s

Processor
core(s)

Off-chip
Memory

Internal
peripherals

Embedded Secure Element

On-chip Security
Subsystem

On-SoC

Processor Secure Environment
(SGX, TrustZone, M-Shield)

On-SoC

RAM ROM

OTP
Fields

External
Peripheral

s

Processor
core(s)

Off-chip
Memory

Internal
peripherals

Minimal Coupling

http://www.globalplatform.org/specificationsdevice.asp

31

Minimal coupling

TEE closely coupled to REE

TEE more isolated from REE

Larger attack surface

Smaller attack surface

Intel SGX

ARM Trustzone

TPM

Greater sharing of resources
(OS services, cache,
memory, processor)

Minimal Coupling

32

Minimal coupling in the real world

Discrete security processors in modern smartphones
• Apple Secure Enclave Processor (SEP)

Apple, iOS Security Whitepaper, May 2019

• Google Titan M
Google Device Security Group, Building a Titan, Android Developers Blog, October 2018

Physical isolation mitigates against entire classes of hardware-level exploits
• Processor, caches, memory, and persistent storage are not shared with main OS

Minimal Coupling

https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://android-developers.googleblog.com/2018/10/building-titan-better-security-through.html

33

Layered defense using multiple TEEs

Enables division of tasks (and secrets) between two (or more) elements

Improved security for stored secrets
Android Strongbox Keymaster https://developer.android.com/training/articles/keystore#HardwareSecurityModule
SEP Secure Key Store https://support.apple.com/en-us/HT209632

Sensitive peripheral management (e.g. camera LED indicator, microphone disconnect)
SEP camera/microphone hardware control https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf

Trusted path (e.g. isolated circuit to side buttons)
Android Protected Confirmation https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html

Insider attack resistance (e.g. firmware updates require device owner’s cooperation)
Android Insider attack Resistance https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html

Minimal Coupling

Replication/Redundancy

https://developer.android.com/training/articles/keystore#HardwareSecurityModule
https://support.apple.com/en-us/HT209632
https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/05/insider-attack-resistance.html

34

Application-specific mitigation

Premise: Exploiting a hardware compromise may leave tell-tale signs

Approach: Use application-specific domain knowledge for detection or
mitigation of the effects of hardware compromise

App-specific mitigation

35

Example: Proof of Elapsed Time (PoET)

PoET is a replacement for Proof of Work in Bitcoin-like blockchains
Proof of Work:
First miner to solve puzzle wins (gets to proposes next block)

Work ~ Exp (difficulty)

Proposals can be made at a rate proportional to computational power

Proof of Elapsed Time:
TEE issues attestation after waiting (idly) for a while; First miner to get the attestation wins

Idle wait time ~ Exp (difficulty)

Proposals can be made at a rate proportional to the number of idle CPUs

Intel, Hyperledger Sawtooth Documentation, 2015

App-specific mitigation

https://www.hyperledger.org/projects/sawtooth

36

Problem: A compromised TEE can win every block

Statistical solution: refuse blocks from machines that
have won too many times
• Before: compromised TEEs give attacker unlimited power
• After: attacker power proportional to # of compromised TEEs

“Design for Failure”

Open question: How can TEE-using applications
detect/mitigate effects of TEE-compromise?

[Intel15] “Hyperledger Sawtooth Documentation” (2015)
[C+174] “On Security Analysis of Proof-of-Elapsed-Time (PoET)”, SSS (2017)

App-specific mitigation
Example: Dealing with TEE compromise

https://www.hyperledger.org/projects/sawtooth
https://link.springer.com/chapter/10.1007/978-3-319-69084-1_19

37

Cross-layer design for security

Hennessy and Patterson on cross-layer design (for performance):
• “Achieving significant gains through such approaches will require a vertically integrated

design team that understands applications, domain-specific languages and related compiler
technology, computer architecture and organization, and the underlying implementation
technology”

• “In this new era, vertical integration has become more important, and teams that can
examine and make complex trade-offs and optimizations will be advantaged”

Such cross-layer design can have similar benefits for security
• Not surprising, as there are often significant trade-offs between security and performance

- Frank Piessens (2019)

App-specific mitigation

38

Carrying security information across layers

Applications may have precise information about what data in the program is
confidential

In state-of-practice compilation, this information is lost

By preserving this information during compilation, we can use it to selectively close
micro-architectural channels used in transient execution attacks

[P+15] “Secure compilation to protected module architectures”, ACM TOPLAS (2015)
[ASJP12] “Secure compilation to modern processors”, CSF (2012)
[N+19] “HardScope: Hardening Embedded Systems Against Data-Oriented Attacks”, ACM DAC (2019)
[LNWPEA19] PAC it up: Towards Pointer Integrity using ARM Pointer Authentication. USENIX Security (2019)

- Frank Piessens (2019)

App-specific mitigation

https://doi.org/10.1145/2699503
https://doi.org/10.1109/CSF.2012.12
https://doi.org/10.1145/3316781.3317836
https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand

Other types of hardware-
assisted security

40

Software Attacks against TEEs

https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html (2016)

https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html (2016)

https://www.blackhat.com/us-15/briefings.html#attacking-your-trusted-core-exploiting-trustzone-on-android (2015)

https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
https://www.blackhat.com/us-15/briefings.html#attacking-your-trusted-core-exploiting-trustzone-on-android

41

Protection against software attacks

Novel hardware architectures
CHERI, fat pointers, …

Hardware extensions rolled out by processor vendors
x86:
• Memory Protection Keys (MPK)
• Memory Protection eXtensions (MPX)

ARM:
• Pointer Authentication (PA)
• Memory Tagging Extensions (MTE)
• Branch Target Indication (BTI)

42

How to utilize hardware-security primitives?

New hardware primitives are being rolled out
• Can we efficiently combine them to achieve new security properties?

How do different techniques compare?
• e.g., ARM PA and ShadowStack achieve similar security for return-address protection?

Understanding can help hardware vendors to choose which mechanisms to deploy

Intel Intel® 64 and IA-32 Architectures Software Developer Manuals (2019)
ARM Armv8.5-A Memory Tagging Extension (2019)

https://software.intel.com/en-us/articles/intel-sdm
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf?revision=ef3521b9-322c-4536-a800-5ee35a0e7665&la=en

43

Forthcoming IEEE SP Special Issue

https://computer.org/digital-library/magazines/sp/call-for-papers-special-issue-on-hardware-assisted-security

IEEE Security and Privacy Magazine
Special Issue on Hardware-assisted Security
mid-to-late 2020

Submissions: Dec 22, 2019

https://computer.org/digital-library/magazines/sp/call-for-papers-special-issue-on-hardware-assisted-security

44

Takeaways

TEEs have been around for more than two decades
Dominant design choice informed by cost and usability considerations

Unconditional trust in hardware-TEEs is no longer acceptable

TEEs are still useful: defense-in-depth, novel mitigations for TEE failure possible?

Other hardware-assisted security mechanisms to harden software are emerging

Thanks to my students:
Lachlan J. Gunn, Hans Liljestrand, Thomas Nyman

https://asokan.org/asokan/
@nasokan

https://asokan.org/asokan/
https://twitter.com/nasokan

45

Acknowledgments

Icons on Platform security for mobile devices and Dealing with TEE compromise made by those-
icons, freepik, and Good Ware from www.flaticon.com licensed by CC 3.0 BY
Icons on Mobile TEEs: Motivation made by Good Ware from www.flaticon.com licensed by CC 3.0 BY
Nokia 6630 image by JotWu from en.wikipedia.org licensed by CC 3.0 BY
Web icon on title slide from material.io licensed by Apache 2.0

https://www.flaticon.com/authors/those-icons
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/good-ware
http://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/
https://www.flaticon.com/authors/good-ware
https://www.flaticon.com/
http://creativecommons.org/licenses/by/3.0/
https://pl.wikipedia.org/wiki/Wikipedysta:JotWu
https://en.wikipedia.org/wiki/Nokia_6630#/media/File:Nokia6630.jpg
http://creativecommons.org/licenses/by/3.0/
https://material.io/resources/icons/?search=public&icon=public&style=outline

	Slide Number 1
	Hardware-assisted TEEs are pervasive
	Concerns with TEEs: flaws
	Concerns with TEEs: suspicions of motives
	Outline
	Look Back
	Platform security for mobile devices
	Early adoption of software platform security
	Example: regulatory compliance
	Mobile TEEs: Motivation
	Mobile TEEs: Development
	Mobile TEEs: Deployment
	Mobile TEEs: Standardization
	Using TEEs
	Original motivations (for mobile TEEs)
	TEE applications: academic literature (1/2)
	TEE applications: academic literature (2/2)
	TEE applications: commercial deployments
	Downsides of TEEs
	Downsides of TEE-based solutions
	Difficulty of developer access
	Risk of TEE compromise
	Dealing with downsides
	Challenge: easy development
	Challenge: open deployment
	Challenge: Dealing with TEE compromise
	Challenge: Dealing with TEE compromise
	Formal Verification
	Recall: TEE system architecture
	TEE hardware realization alternatives
	Minimal coupling
	Minimal coupling in the real world
	Layered defense using multiple TEEs
	Application-specific mitigation
	Example: Proof of Elapsed Time (PoET)
	Example: Dealing with TEE compromise
	Cross-layer design for security
	Carrying security information across layers
	Other types of hardware-assisted security
	Software Attacks against TEEs
	Protection against software attacks
	How to utilize hardware-security primitives?
	Forthcoming IEEE SP Special Issue
	Takeaways
	Acknowledgments

