
Towards Verifiable Properties of AI systems
via Hardware-Assisted Attestations

N. Asokan
https://asokan.org/asokan/
@asokan.org @nasokan

(Joint work with Vasisht Duddu, Oskari Järvinen, Lachlan J. Gunn, Prach Chantasantitam, Adam Caulfield)

https://asokan.org/asokan/

2

Various jurisdictions have announced forthcoming AI regulations[1,2,3]

• E.g., Requirements governing distribution of (demographic) attributes in training datasets

Designed to ensure that AI models have desirable properties
• Representativeness, fairness, privacy, robustness, transparency, etc.

AI Regulations are Emerging

[1] European Commission, General-Purpose AI Code of Practice, 2025
[2] United Kingdom Parliament, Artificial Intelligence (Regulation) Bill, 2025
[3] Brazilian Senate, Brazil AI Act, 2024
[4] Executive Office of the US President, Executive Order 14110: Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence, 2023
[5] European Parliament, AI Act: Recital 67, 2021

AI Act [5]Executive Order 14110 [4]

… incorporation of equity principles in AI-enabled
technologies used in the health and human services
sector, using disaggregated data on affected
populations and representative population data sets
when developing new models, monitoring
algorithmic performance against discrimination and
bias in existing models, and helping to identify and
mitigate discrimination and bias in current systems;

The data sets should also have the appropriate
statistical properties, including as regards the
persons or groups of persons in relation to whom
the high-risk AI system is intended to be used, with
specific attention to the mitigation of possible biases
in the data sets, that are likely to affect the health
and safety of persons, have a negative impact on
fundamental rights or lead to discrimination
prohibited under Union law, especially where data
outputs influence inputs for future operations

https://ec.europa.eu/commission/presscorner/detail/en/ip_25_1787
https://ec.europa.eu/commission/presscorner/detail/en/ip_25_1787
https://ec.europa.eu/commission/presscorner/detail/en/ip_25_1787
https://bills.parliament.uk/bills/3942
https://artificialintelligenceact.com/brazil-ai-act/
https://www.federalregister.gov/documents/2023/11/01/2023-24283/safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence
https://artificialintelligenceact.eu/recital/67/

3

Mechanisms to Advertise Model Properties Exist
AI model providers use “nutrition labels” to advertise model properties

Model cards (for model properties)[1], datasheets (for datasets)[2,3]

• Adapted by Google, Huggingface and others

[1] Mitchell et al. Model Cards for Model Reporting, FAccT 2019
[2] Gebru et al. Datasheets for datasets, Communications of ACM 2021
[3] Pushkarna et al. Data Cards: Purposeful and Transparent Dataset Documentation for Responsible AI, FAccT 2022

Source: https://www.trail-ml.com/blog/ml-model-cards

Model Cards Datasheets

Source: https://datos.gob.es/en/blog/data-documentation-datasheets-datasets

https://modelcards.withgoogle.com/about
https://huggingface.co/docs/hub/en/model-cards
https://dl.acm.org/doi/10.1145/3287560.3287596
https://dl.acm.org/doi/10.1145/3458723
https://dl.acm.org/doi/10.1145/3531146.3533231
https://www.trail-ml.com/blog/ml-model-cards
https://www.trail-ml.com/blog/ml-model-cards
https://www.trail-ml.com/blog/ml-model-cards
https://www.trail-ml.com/blog/ml-model-cards
https://www.trail-ml.com/blog/ml-model-cards
https://www.trail-ml.com/blog/ml-model-cards
https://www.trail-ml.com/blog/ml-model-cards
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets
https://datos.gob.es/en/blog/data-documentation-datasheets-datasets

4

Types of AI Property Cards

Trained Model

Configuration (T)

Model Architecture
(Mar)

Accuracy, Fairness,
Robustness

Data Metrics
(bias, size)

Attribute
Distribution

Training Evaluation Inference

Train Dataset

Test Dataset

Datasheets Model Cards Model Cards Inference Cards
(Proposed)

Query

Response

5

The Need for Verifiable Properties of AI Systems

How to verify compliance with regulation/policy/standard?

Traditional approaches (like verification by an authority) may not work for AI systems

• Release of some information may be subject to other regulation
• E.g., health-related sensitive data

• Third parties may need to check compliance before official verification
• Fast-moving ecosystem

Need a way to attest to claimed properties without leaking any sensitive data

6

Existing Property Attestation Mechanisms
Machine Learning (ML)-based Attestations
Error-prone and not robust: e,g.,
• proof of learning[1,2]

• re-purposing distribution inference for attesting attribute distribution properties[3]

Cryptographic Attestations (e.g., Zero-knowledge Proofs, Multi-party Computation)
Inefficient: e,g.,
• ~13 minutes for inference (I/O) attestation (e.g., using ZKPs with LLMs[4])
• ~15 minutes per iteration of gradient descent for proof of training[5]

• Sometimes need to retrain model each time[3]

Not Versatile: Limited to crypto-friendly properties

[1] Zhang et al. “Adversarial Examples” for Proof- of-Learning, IEEE S&P 2022
[2] Fang et al. Proof of Learning is more Broken than You Think, IEEE EuroS&P 2023
[3] Duddu et al. Attesting Distributional Properties of Machine Learning Training Data, ESORICS 2024
[4] Sun et al. zkLLMs: Zero Knowledge Proofs for Large Language Models, ACM CCS 2024
[5] Abbaszadeh et al. Zero-Knowledge Proofs of Training for Deep Neural Networks, ACM CCS 2024

https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2208.03567
https://arxiv.org/abs/2208.03567
https://arxiv.org/abs/2308.09552
https://arxiv.org/abs/2404.16109
https://arxiv.org/abs/2404.16109
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2024/162

7

Desiderata for ML Property Attestation
R1 Efficient

Incur low computation overhead

R2 Versatile
Support various ML properties for training and inference

R3 Scalable
Support multiple verifiers

R4 Robust
Resist evasion of attestations by malicious prover

8

Hardware-assisted TEEs are Pervasive

Hardware support for
- Isolated execution: Isolated Execution Environment
- Protected storage: Sealing
- Ability to convince remote verifiers: (Remote) Attestation

Other
Software

Trusted
Software

Protected
Storage

Root of Trust

https://www.ibm.com/security/cryptocards/ https://www.infineon.com/tpm https://www.intel.com/…/securing-your-trust-
boundary-with-intel-sgx-and-intel-tdx.html

https://www.arm.com/products/security-on-arm/trustzone

Cryptocards Trusted Platform Modules ARM TrustZone
Intel Software Guard Extensions (SGX)
and Trust Domain eXtensions (TDX)

Trusted Execution Environments (TEEs)
Operating in parallel with “rich execution environments” (REEs)

[1] Asokan et al. Mobile Trusted Computing, Proceedings of the IEEE, 102(8) 2014
[2] Ekberg et al. Untapped potential of trusted execution environments, IEEE S&P Magazine, 12:04 2014

https://www.ibm.com/security/cryptocards/
https://www.infineon.com/tpm
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.intel.com/%E2%80%A6/securing-your-trust-boundary-with-intel-sgx-and-intel-tdx.html
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
https://doi.org/10.1109/JPROC.2014.2332007
https://doi.org/10.1109/MSP.2014.38

9

Verifier ascertains current state and/or behavior of Prover

What is Remote Attestation?

Prover VerifierEvidence

Attestation
Protocol

Measurement
Process

I’m talking to
program P

Verification
Process

I’m running
program P

A practical mental model for SGX and TDX attestation:
Certificate showing that something came from software with a certain hash

Application-
defined

data

P
Running on
HW platform

HW platform
certified by

manufacturer

10

Can TEEs Enable ML Property Attestation?
Recent developments make ML training/inference within TEEs feasible (efficient)
• Intel’s AMX extensions[1], NVIDIA’s H100 GPU[2]

• Available in cloud computing platforms

Property Attestation for TEEs
• Remote attestation was extended to properties of binaries running inside TEEs[3]

• Can we adapt this for attesting ML properties?

[1] Google Cloud Team, We tested Intel’s AMX CPU accelerator for AI and here’s what we learned, 2024
[2] Zhu et al. Confidential Computing on NVIDIA’s H100 GPU: A Performance Benchmark Study, 2024
[3] Sadeghi and Stuble, Property-based attestation for computing platforms: caring about properties, not mechanisms, ACM NSPW’04

https://cloud.google.com/blog/products/identity-security/we-tested-intels-amx-cpu-accelerator-for-ai-heres-what-we-learned
https://arxiv.org/abs/2409.03992v2
https://dl.acm.org/doi/10.1145/1065907.1066038
https://dl.acm.org/doi/10.1145/1065907.1066038
https://dl.acm.org/doi/10.1145/1065907.1066038

11

Enabling non-interactive property attestation

Prover Initiator

Attestation
Protocol

Measurement
Process

Verification
Process

I’m running requested
operation (op) with inputs
(I) to obtain outputs (O)

Initiator Prover
• Initiator specifies operation type and inputs (challenge, datasets/models, configs)
• Prover provides outputs and attestations

Initiator Verifier
• Non-interactive with respect to operation
• Initiator provides evidence to Verifier
• Verifier performs verification process

Request:
Inputs, Operation

Response:
Outputs, Attestations

Verifier
Attestations

Check I, O, op
correspond to an

expected property (P)

12

Our Frameworks

Measurer within TEE measures desired property
TEE produces attestation (property card fragment)

Property attestations
• Laminator[1]: SGX-based for classifiers
• PAL*M[2]: TDX-based for large generative models

Assertion bundle
• combines certificates and attestations from various sources
• checkable by Verifier to realize verifiable property cards

Verifier

Verifiable
Property

Cards

Measurer PyTorch

Python

Laminator Enclave

PAL*M Trust Domain
Trusted Certifier

Trusted Certifier

Non-computational
property certificates

Assertion
Bundle

Attestations

[1] Duddu et al. Laminator: Verifiable ML property cards using hardware-assisted attestations, CODASPY 2025
[2] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2601.16199

13

ML Property Attestations in Laminator[1]

[1] Duddu et al. Laminator: Verifiable ML property cards using hardware-assisted attestations, CODASPY 2025

Proof of Attr. Distn. Proof of Training

Dataset Enclave

Training data
(Dtr)

Attr. Distribution
(PDist)

H(Dtr)

Attestation

H(PDist)

Outputs

Property
Dtr satisfies PDist

Training Enclave

Training
Configuration (T)

Model
Architecture (Mar)

Model (M)

H(Dtr)

Attestation

H(M)

H(T)

H(Mar)

Outputs

Property
M was trained on

Dtr using T and Mar

Proof of Evaluation

Dataset Enclave

Test data (Dte)

Evaluation
metric (metric)

H(Dte)

Attestation

H(M)

H(metric)

Outputs

Property
metric is evaluation
result of M on Dte

Proof of Inference

Dataset Enclave

Input query (q)

Response (r)

H(q)

Attestation

H(M)

H(r)

Outputs

Property
r is from M for a

given q

https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548

14

Beyond Laminator[1]…
Laminator[1] is limited due to use of SGX
• Runs small models (classifiers), cannot efficiently support generative models
• Large generative models require GPU for realistic performance

This motivates PAL*M[2] for verifiable Property Attestations of Large Generative Models
• Runs natively on Intel TDX
• Uses GPU (NVIDIA H100 CC) instead of CPU-only implementation
• Support generative models (e.g., LLMs)

[1] Duddu et al. Laminator: Verifiable ML property cards using hardware-assisted attestations, CODASPY 2025
[2] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2601.16199

15

Challenges in PAL*M[1]

How to handle CPU-GPU operations accurately & efficiently
• Operations use GPU for practical performance
• Must prove GPU in use is trusted
• Must verify (1) GPU is trusted and (2) CPU used trusted GPU

How to account for large datasets
• Standard ML frameworks may use memory-mapping
• Thus, dataset resides outside trust boundary
• Training may involve randomly sampling from dataset

How to define properties relevant to generative models
• Account for common practices like fine-tuning, inference “sessions”

[1] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2601.16199

16

Challenge: CPU-GPU settings

Trusted Certifier

Non-computational
property certificates

Assertion
Bundle

Verifier

Verifiable
Property

Cards

PAL*M extends trust boundary to GPU
Leverages GPU TEE: NVIDIA[1] H100
• attests its own configuration GPUAtt

Property measurement includes GPUAtt

Laminator

Trust
Domain

H100
GPU

PAL*M

[1] NVIDIA Cloud & Data Center, NVIDIA H100, Accessed: 2025

Attestations

https://www.nvidia.com/en-us/data-center/h100/

17

Memory

Challenge: Handling large datasets

Case 1: In-memory dataset
• Less commonly used
• D stays in TD memory
• High memory costs
• Integrity measurement is straightforward:

• Load, measure, use

Trusted Domain (TD)

ProgramD

In-memory dataset

Disk

D

18

Challenge: Handling large datasets

Case 1: In-memory dataset
• Less commonly used
• D stays in TD memory
• High memory costs
• Integrity measurement is straightforward:

• Load, measure, use

Case 2: Memory-mapped
• Commonly used
• Memory map in TD memory, D stays on disk
• Low memory costs
• Integrity measurement not straightforward

• Vulnerable to time-of-check to time-of-use attacks
• Training may use a random sequence of training dataset

Trusted Domain (TD)

Program

Mapping
of D

Memory

Di

Disk

D

Random
Sampling

Memory-mapped dataset

19

Challenge: Handling large datasets

Trusted Domain (TD)

Program

Mapping
of D

Memory

Di

Disk

D

MSH(Di)

Memory-mapped
• Use increment multiset hash (MSH)[1]

• Produces a unique hash for a set
• Incremental: adds one record at a time
• Produces unique hash regardless of order

Result:
• Final MSH represents entire dataset
• Dataset remains in external storage
• Tampering detectable
• Added performance cost vs. typical hash
• For generative models, this cost is:

• incurred once and
• minimal for multi-time operation

Random
Sampling

[1] Clarke, Dwaine, et al. Incremental multiset hash functions and their application to memory integrity checking, International
conference on the theory and application of cryptology and information security, 2003

Memory-mapped dataset

https://link.springer.com/chapter/10.1007/978-3-540-40061-5_12

20

Challenge: Defining Generative AI Properties

Dataset Properties Model Properties Inference Properties

Starting with verifiable ML properties from Laminator[1]…

Proof of Attribute
Distribution Proof of Training

Proof of Evaluation

Proof of Inference

PAL*M[2] introduces methods to handle characteristics of generative models
• Unique operations of generative models
• Operations along generative-model pipeline
• GPU use for any operation

Proof of
Preprocessing

Proof of Binding Proof of
Optimization

Proof of Session
Inference

Proof of Attribute
Distribution

Proof of Evaluation

Proof of Inference

[1] Duddu et al. Laminator: Verifiable ML property cards using hardware-assisted attestations, CODASPY 2025
[2] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

Proof of Training

https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2601.16199

21[1] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

Proof of Optimization Proof of Session Inference
Inputs Params

Optimization

Optimized
Model (Mopt)

Outputs

Property
Mopt derived from M

via optimization t

Pretrained
Model (M)

Tokenizer
(Mtok)

Configuration
(C)

Type (t)
[Optimization
Dataset (Dopt)]

[Adapter
model (Madp)]

H(Mopt)

Attestation

H(Inputs)

GPUAtt

H(Params) Property
Hist || q passed
to Mtok then Minf

to obtain r

Session
Inference

Response (r)

Outputs

H(Params)

Attestation

H(Inputs)

Inference
Model (Minf)

Input query
(q)

Inputs Params

Tokenizer
(Mtok)

Configuration
(C)

H(r)

History
(Hist)

H(Hist)

GPUAtt

New Properties in PAL*M[1]

https://arxiv.org/abs/2601.16199

22

Training

M

Params

MSH(Dtr)

H(M)

GPUAtt

H(Params)

Optimization

Mopt

Params

H(t)

H(Params)

GPUAtt

H(Mopt)

H(M)

t

New Properties in PAL*M [1] : The Big Picture

Some gaps remain

Attribute
Distribution

Dtr

H(Dtr)

GPUAtt

H(PDist)

PDist

Proof of Attr. Distn. Proof of Training Proof of Optimization Proof of Evaluation Proof of Inference

[1] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

q

GPUAtt

H(Mopt)

H(q)

H(Hist)

H(r)

Session
Inference

Hist

r

Dte

MSH(Dte)

H(metric)

GPUAtt

metric

H(Mopt)

Evaluation

https://arxiv.org/abs/2601.16199

23

Preprocessing

Other attestation may
not have used MSH

Training data typically
preprocessed.

Preprocessed data and training
data may not match

Dpre

New Properties in PAL*M [1] : Property Disconnects

Or, public hash
referenced by Verifiers
likely is not MSH

MSH(Dpre)

Training

Params

M

MSH(Dtr)

H(M)

GPUAtt

H(Params)

Attribute
Distribution

Dtr

H(Dtr)

GPUAtt

H(PDist)

PDist

MSH(Dpre)

[1] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2601.16199

24

Preprocessing

H(Dpre)

Dpre

H(Dtr)

GPUAtt

Addressing Property Disconnects
We introduce preprocessing and binding property attestation to enabling chaining

Measurement
Binding

MSH(Dpre)

H(Dpre)

Training

Params

M

H(M)

GPUAtt

H(Params)

Attribute
Distribution

Dtr

MSH(Dpre)H(Dtr)

GPUAtt

H(PDist)

PDist

Proof of Preprocessing

Proof of Binding

Evaluation: Limitations

25

VM0 VMNQE

VMM

…

Disk

H100

TDX
Module

PAL*M TD
PAL*M-enabled Prover

Initiator

PAL*M[1] End-to-End Property Attestation

op, chal, [Inputs]

op, chal, [Inputs]

Property measurements are used with hardware-assistance in Intel TDX for attestation

[1] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

Outputs

Attestations

Outputs

Attestations

op, chal, [Inputs]

TDX
Attestations

TDX

Outputs

QE

OutputsGPUAtt

Attestations
TDXQE

run op & measure

https://arxiv.org/abs/2601.16199

26

Experimental Setup

Evaluation Metric: measure additional run-time for each property attestation types

Component Laminator[1] PAL*M[2]

Dataset CENSUS (tabular)
UTKFACE (images)

IMDB (text)

BookCorpus
Yahma/alpaca-cleaned

MMLU & WMT14
CoQA

Models MLP [128], MLP [128, 256, 512, 256]
VGG11, VGG16

LSTM [64, 256, 256],
LSTM [64, 256, 256, 256, 256]

Llama-3.1-8B
Gemma-3-4B

Phi-4-Mini

System Setup Intel SGX
Gramine

Intel TDX
Ubuntu

NVIDIA H100 CC

Datasets, models, and system configuration used for Laminator[1] & PAL*M[2]

[1] Duddu et al. Laminator: Verifiable ML property cards using hardware-assisted attestations, CODASPY 2025
[2] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2601.16199

27

Evaluation: Dataset & Model Properties in Laminator[1]

Input, output: measurement roughly scales with size

Attestation constant across all datasets and models

Overall, overhead is low
• Proof of Attribute Distribution: 0.36% to 2.05%
• Proof of Training: <0.01% to 0.32%
• Proof of Evaluation: <0.01% to 0.35%

[1] Duddu et al. Laminator: Verifiable ML property cards using hardware-assisted attestations, CODASPY 2025

https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548

28

Evaluation: Dataset Properties in PAL*M[1]

Proof of Attribute Distribution:
• Memory-mapped: 67.95%
• In-memory: 0.015%

Proof of Preprocessing:
• Memory-mapped: 62.55%
• In-memory: 0.06%

Proof of Binding: 69.55%

Takeaway
Expensive for memory-mapped datasets

But performed only once per unique dataset

[1] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2601.16199

29

Evaluation: Model Properties in PAL*M[1]

Proof of Training
• Memory-mapped: 5.66%
• In-memory: 0.01%

Proof of Optimization (Fine-tuning)
• Memory-mapped: 0.72% to 1.35%
• In-memory: 0.09% to 0.18%

Proof of Optimization (Quantization): 4.7%

Proof of Evaluation (MMLU and BLEU score)
• Memory-mapped: 0.17% to 10.11%
• In-memory: 0.12% to 2.60%

Takeaway
Low cost to attest properties of

multi-time model operations

[1] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2601.16199

30

Evaluation: Efficiency for Inference Properties
In Laminator[1], baseline cost for single inference low compared to attestation
• High overhead between 39% and 3955% (aka “overhead w/ att”)

Amortizing overhead over several proofs of inference
• Generate signing keypair during initialization and attest once
• Sign each inference result for indirect, low-cost attestation (“overhead w/ sgn”)

• Overhead between 0.17% and 1.17%

In PAL*M[2], this pattern is also observed for inference and session inference:
• Proof of Inference: 43.28% to 64.34%
• Proof of Session Inference: 3.57% to 11.03%

[1] Duddu et al. Laminator: Verifiable ML property cards using hardware-assisted attestations, CODASPY 2025
[2] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2601.16199

31

Evaluation: Scalability, Versatility, Robustness
Scalable
• Measurements signed using TEE’s attestation key
• Multiple verifiers can independently validate the attestations

Versatile
• Can attest any ML property that can be specified in python measurer script
• Allows external certificates and ZKP certificates

Robust
• Inherited from TEE integrity guarantees

32

Evaluation: Limitations
Side channel attacks
• Architectural extensions enable countermeasures[1,2]

Deployed on single CPU and GPU
• Cannot take advantage of distributed training

Execution integrity
• Guarantees are uncertain with run-time attacks

[1] ElAtali et al. BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking, NDSS 2024
[2] ElAtali et al. BLACKOUT: Data-Oblivious Computation wth Blinded Capabilities, CCS 2025

https://arxiv.org/abs/2204.09649
https://arxiv.org/abs/2204.09649
https://arxiv.org/abs/2204.09649
https://arxiv.org/abs/2504.14654
https://arxiv.org/abs/2504.14654
https://arxiv.org/abs/2504.14654

33

Looking forward: Verifiable ML Ecosystems
Prior work[1] has proposed ecosystem graphs

• Track relationships between models, datasets, services
• No verification of submissions
• No accountability for updating the graph

False information could be added into the graph
• By contributors: for competitive advantage
• By graph maintainers: to favor a certain organization

Architectural support for verifiable ecosystems
• Graph operations  attestable asset dependencies:

• Model-to-model, model-sources-output, model-model-output
• Enable verifiable maintenance of ecosystem graphs

Examples relationships from1

[1] Bommasani et al. Ecosystem Graphs: The Social Footprint of Foundation Models, AIES 2024

https://arxiv.org/abs/2303.15772

34

Verifying Provenance: of models, external data sources, training data

How can we combine property attestations for verifiable output provenance of…
• Models when model router selects model that should respond to a query
• External data sources for AI Agents that may be vulnerable to indirect prompt injection
• Training data that has strongest influence over outputs

Looking forward: Applying Property Attestations

Router

Mcomplex

Msimple

Input

Output

Model Routers

LLM

Toolkit

External
Data

Input

Output

AI Agents

Train

D0

D1

Training Data

…

DN

M

35

Points of discussion

Can be PAL*M[1] useful in other settings?
• Corporate policy compliance checks?

Is PAL*M[1] addressing a real need?
• What technical mechanisms needed for demonstrating AI policy or standard compliance?

[1] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://arxiv.org/abs/2601.16199

36

Summary
Verifiable ML property cards prevent malicious model provider
from including false information

Laminator[1] & PAL*M[2]: verifiable ML properties via h/w assistance:
• Efficient: Incurs low computation overhead
• Scalable: Attestations can be checked by multiple verifiers
• Versatile: Any ML property specified in python can be attested
• Robust: Resists evasion by malicious provers

https://ssg-research.github.io/mlsec/mlattestation

Looking forward:
• Enabling verifiable ML properties in distributed and global settings
• Covering run-time properties and provenance of outputs of ML systems

[1] Duddu et al. Laminator: Verifiable ML property cards using hardware-assisted attestations, CODASPY 2025
[2] Chantasantitam et al. PAL*M: Property Attestation for Large Generative Models, arXiv 2026

https://ssg-research.github.io/mlsec/mlattestation
https://ssg-research.github.io/mlsec/mlattestation
https://ssg-research.github.io/mlsec/mlattestation
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2406.17548
https://arxiv.org/abs/2601.16199

	Towards Verifiable Properties of AI systems�via Hardware-Assisted Attestations
	AI Regulations are Emerging
	Mechanisms to Advertise Model Properties Exist
	Types of AI Property Cards
	The Need for Verifiable Properties of AI Systems
	Existing Property Attestation Mechanisms
	Desiderata for ML Property Attestation
	Hardware-assisted TEEs are Pervasive
	What is Remote Attestation?
	Can TEEs Enable ML Property Attestation?
	 Enabling non-interactive property attestation
	Our Frameworks
	ML Property Attestations in Laminator[1]
	Beyond Laminator[1]…
	Challenges in PAL*M[1]
	Challenge: CPU-GPU settings
	Challenge: Handling large datasets
	Challenge: Handling large datasets
	Challenge: Handling large datasets
	Challenge: Defining Generative AI Properties
	Slide Number 21
	New Properties in PAL*M [1] : The Big Picture
	Slide Number 23
	Slide Number 24
	PAL*M[1] End-to-End Property Attestation
	Experimental Setup
	Evaluation: Dataset & Model Properties in Laminator[1]
	Evaluation: Dataset Properties in PAL*M[1]
	Evaluation: Model Properties in PAL*M[1]
	Evaluation: Efficiency for Inference Properties
	Evaluation: Scalability, Versatility, Robustness
	Evaluation: Limitations
	Looking forward: Verifiable ML Ecosystems
	Looking forward: Applying Property Attestations
	Points of discussion
	Summary

