

Abstract— The ability to access remote file storage from mobile

devices enables a number of new use cases for storing and sharing
data. We describe the design and implementation of a Remote
Storage Client framework on Symbian OS, the leading smart
phone OS on the market. Our work is inspired and informed by
previous work like Coda [1]. We describe why Coda cannot be
used directly in our target scenarios and environments. We then
describe how we adapted the Coda concepts to suit our needs.
The advanced features supported by the framework include
disconnected operation with whole-file caching and immediate
file access (adapting whole-file caching principle to multimedia-
centric smart phones). Using this framework, we have
implemented Symbian OS remote filesystems based on WebDAV
and FTP.

Index Terms—disconnected operation, remote file systems,
Symbian OS, WebDAV

I. MOTIVATION
Carol is on vacation. She takes lots of pictures with her

camera phone and fills up almost all the available memory.
When she comes back home, her phone detects the presence of
a high bandwidth Internet access point and automatically
moves her new pictures to her Internet photo album service
storage space. So when she sits at her laptop and opens her
photo album, she can already see the new pictures. She starts
her photo editing software and makes a collage from some of
the nicer pictures.

Then Carol goes for an evening out and meets Alice. Carol
wants to show off the collage she made earlier. In her phone’s
media gallery application, she chooses the remote storage tab,
locates the collage picture and opens it. It takes a few seconds
for the image to download over the cellular network
connection. Alice is impressed by the collage. However, Carol
insists on adding an audio track to the collage and picks a
suitable MP3 from her home server, which she then shortens
to fit the collage better. Finally, Carol grants Alice access to
her Internet photo album. Alice now sees Carol’s Internet
photo album as a new tab in her phone’s media gallery and is

able to view and edit pictures.
These types of usage scenarios that involve storing,

retrieving and sharing require support for remote storage
access in mobile devices. This paper gives a brief overview of
our work in this area.

II. INTRODUCTION
Data objects like images and videos are typically stored as

files in a file system. The scenario above implies that it must
be possible to seamlessly access and modify files from several
devices. Applications access files using a standard file system
API. Therefore it is logical to integrate remote storage access
into the file system. Files could either be transferred directly
from device to device or by using a network server.

We have developed a framework for accessing remote
filesystems with Symbian OS phones. In remote access, a
storage server exports a part of its filesystem, which the phone
mounts. The filesystem appears as a new drive on the phone.
The storage server can be on a centralized network server or
on another phone. The advanced features we have developed
include disconnected operation, similar to Coda distributed file
system [1], but using more widely deployed protocols (e.g.
WebDAV [2]). Disconnected operation means that the client
device can continue to use cached files even when the server is
out of reach. This implies aggressive caching. We have also
developed advanced caching policies that attempt to support
disconnected operation and high-latency wireless networks by
utilizing whole-file caching whenever possible. However we
must take into account that ensuring smooth operation of a
multimedia centric smart phone sometimes requires quick
access to a portion of data.

In this paper, after setting requirements (Section III), we
describe the components of the Remote Storage Client
framework (Section IV). We examine some specific issues
related to the system in Section V. We then give the first
experiences in using the framework in a Symbian OS smart
phone (Section VI). Section VII describes related work, and
finally, Section VIII outlines directions for future work.

III. REQUIREMENTS
Our use cases with mobile devices suggest a distributed file

system (DFS) that supports high data availability with
disconnected operation. The client devices in our scenarios
may use bearers with different characteristics: cellular data

Remote Storage for Mobile Devices

Jarkko Tolvanen, Tapio Suihko, Jaakko Lipasti, and N. Asokan

Manuscript received June 23, 2005.
Jarkko Tolvanen, Jaakko Lipasti, and N. Asokan are with Nokia

Research Center, Helsinki, Finland (e-mail:
firstname.lastname@nokia.com).

Tapio Suihko is with VTT Information Technology, Espoo, Finland
(e-mail: tapio.suihko@vtt.fi).

bearers like General Packet Radio Service (GPRS) have low
bandwidth, high latency, and may have volume-based
charging, whereas local area bearers like WLAN have
opposite characteristics. With a view to easing deployment, we
wanted to use standardized protocols, and preferably not
require server-side changes.

At first glance, Coda would seem like a suitable DFS that
supports disconnected operation with aggressive caching.
However, we decided not to use Coda for the following
reasons:

• It does not use standard protocols, and its
deployment is marginal outside the academic
community.

• It was mainly designed for high-bandwidth, low-
latency bearers.

Although we chose not to use Coda as is, we adopted its

basic ideas, like optimistic concurrency control and whole-file
caching. As we discuss below, we had to refine or adapt Coda
notions to suit the constraints of our target environment.
WebDAV has been our primary access protocol. WebDAV is
an HTTP extension, and as such has quickly gained acceptance
and deployment. It uses reliable TCP/IP communication, so we
do not have to take care of e.g. packet retransmissions
ourselves. Packets using standard HTTP ports (80 and 443) are
usually able to pass through firewalls without a need for extra
configuration. This design has also some drawbacks: Perhaps
most importantly, we miss server-side callbacks that for
example Coda and NFSv4 [4] have demonstrated to be a
useful optimization in cache consistency management.
However, mobile network (like GPRS) operators do not
typically allow incoming packets from Internet anyway, but
only allow replies that promptly follow mobile device initiated
communication. We also miss the high availability that
replicated Coda servers can offer. Moreover, by relying on
standard file transfer protocols, we can only refer to files by
their path names and cannot assume any path-independent
identifiers.

Fetching and caching whole files is a natural consequence
of the requirement to support disconnected operation.
However, applications sometimes only peek at a part of file
contents without any intention to consume the whole file. For
example, Symbian OS uses a recognizer architecture to figure
out the MIME type of a file by a reading a small data sample
from the beginning. Media player applications read metadata
embedded into the media files like MP3 to present an
informative listing of the contents to the user. When Coda-like
whole-file caching is used, attempts to read a few bytes from
the beginning of the file may result in a long delay before the
whole file is downloaded. Therefore, our system should
support immediate file access features to enable these cases.
Thus we can enjoy some benefits of NFS-like systems, which
fetch and cache file blocks.

IV. REMOTE STORAGE CLIENT FRAMEWORK
Symbian OS uses micro-kernel architecture. The file

systems in Symbian OS are managed by the Symbian OS File
Server, which is a user level process. Our Remote Storage
Client (RSC) framework integrates remote file storages into
the File Server. The framework uses cache in a local file
system, so that disconnected operation can be supported. The
framework consists of platform components and applications
(see Fig. 1).

File Server

 RSC LFFS FAT

Remote
File Engine

DAV

FTP

Other Clients Mounter File Browser

Fig. 1. Remote Storage Client Framework Components

The platform components include a remote file system
extension to Symbian OS File Server and a Remote File
Engine. Remote file access protocols attach to the engine
through protocol plug-ins (WebDAV and FTP in the figure).
For mounting and remote file management we have
implemented a separate Mounter application and an enhanced
Filebrowser.

A. RSC File System
File systems in Symbian OS operate within the File Server.

Typically, FAT or LFFS file system is used for local media,
like the phone’s flash memory or a removable memory card.
Each filesystem is mounted on a drive letter. Requests for
different drives are handled by different File Server threads.
The File Server also offers an interface for dynamically
installable file systems to support access to other media, like
remote file storages over a network. Remote file system code
is also run in a dedicated thread, which makes it possible to
recur to the services of the local file systems from the remote
file system code. This makes it possible to easily cache remote
files.

Our RSC File System attaches to the above-mentioned File
Server’s interface for dynamically installable file systems. Its
design was originally inspired by Coda. In Coda
implementations for UNIX variants, the operating system
kernel contains a stub file system interface that delegates
remote file access operations to a user-space process (called
Venus) that performs all communication with remote storage
servers. We implemented a corresponding architecture where
the RSC module translates operations on Symbian-defined file
system objects into file access primitives that are similar to
those used at Coda’s Kernel-Venus interface. These primitives

define the interface between RSC File System and the Remote
File Engine.

In Coda the likely motivation for this separation is that only
a small part of the code runs in a privileged kernel mode, and
most of the code is easily portable user level code. In Symbian
micro-kernel architecture File Server is also a user-level
process. However, this separation also has a security benefit in
that the Remote File Engine does not need all the privileges of
the File Server. This is relevant because Symbian OS version 9
introduced a security architecture where different processes
can be assigned different privileges. The File Server is a part
of Trusted Computing Base (TCB) and has significant
privileges. TCB is kept as small as possible. By separating the
Remote File Engine from the File Server, we avoid the need
for granting TCB privileges to the Remote File Engine.

B. Remote File Engine
The Remote File Engine takes care of remote file fetching

and caching. It has been implemented as a Symbian OS server,
i.e., as a separate process. This solution adds the process-
switching overhead related to client-server communication but,
on the other hand, it is flexible by allowing specification of
new APIs to the engine’s remote access functions that could
not be reachable through the Symbian OS File Server API. For
example, the engine provides a dedicated API for controlling
mounting operations. This API is used by our Mounter
application (as indicated in Figure 1).

When remote file storage is to be mounted the engine
receives connection parameters in the form of a URI, which,
by definition, can convey all information that is needed for
attaching to a storage server: file access protocol (service
name), server name, TCP/IP port number, username,
password, and root directory. For each new mount, the engine
instantiates a management object, which then on demand loads
a protocol plug-in module that implements the file access
protocol specified in the URI.

A protocol plug-in module in our framework is a
polymorphic DLL that implements our access interface. The
interface consists of primitive file system operations. If a
remote storage can be accessed in a meaningful way using this
interface, it can be presented as a remote drive in Symbian File
Server using this framework. We have implemented protocol
plug-in modules for WebDAV [2] and FTP [3], and for
accessing the phone’s local filesystem (C-drive) through the
Remote File Engine. The local filesystem plug-in is used only
for testing.

C. Enhanced Filebrowser
Typical user interface applications for such system as

described here include a mount management application,
which allows the user to define mount configurations and
mount and unmount remote storages, as well as applications
used to access the mounted remote storages. The basic
application is a File Browser.

A guiding principle in Coda was location transparency: the
user does not have to know whether she is accessing a file
directly from the server, or from the local cache. We argue that
this is not a reasonable assumption when the communication
bearer has low-bandwidth or has volume-based charging.
Exposing caching via the user interface is a somewhat
controversial issue. However, usage of remote files involves
first downloading them from the network. In mobile networks,
this can be a time consuming and relatively expensive
operation. Therefore, it is important to point out to the users
that the file in question actually resides on the network.

We have enhanced a file browser for Symbian based S60
smart phones with features that make the user aware of the
caching state of files and, to some extent, allow the user to
control caching. Our enhanced Filebrowser indicates which
files or directories are remote and which have already been
fetched and locally cached (the antenna sign in Figure 2).

Fig. 2. Enhanced Filebrowser

 Our rudimentary caching control allows the user to
explicitly fetch selected files into the local cache. The user can
also refresh a cached file or mark a file with a sticky tag that
makes the file persistent in the cache.

V. DESIGN ISSUES

A. Cache Consistence
Remote Storage Client should retain cache consistence in

cases where multiple client devices access the same files at the
same time. When a file is fetched from the remote storage and
cached, the local copy in the cache becomes stale if the file in
the remote storage changes. Moreover, if also the local copy
then changes and is eventually transferred back to the server, a
conflict will occur.

Cache invalidation can be avoided if the file in the remote
storage is locked. However, locking is overkill when a file is
only opened for reading. If locking is not used, the validity of
the cache should be guaranteed by some other means. For
example, the remote file server could notify the client of
changed files. This mechanism is used in Coda, where the

server commits to send the notification, called “callback
promise”. Also NFSv4 uses a variation of this mechanism.
Alternatively, the client could check cache validity when the
lifetime of the cached data expires (such mechanism is used in
earlier versions of NFS, for example). However, while the
client is disconnected from the server and the client is
optimistically allowed to access cached files, cache validity
cannot be verified and conflicting updates cannot be detected
(this is discussed in Section C).

We have implemented a freshness interval based polling
mechanism that only involves the client side. Each time a
cached copy is opened, and if the validity of the cached copy
has expired, the validity is checked against the server. When
unique file instance identifiers (for example ETags in
WebDAV) are available, those are used to compare the local
copy and the file on the server. If the identifiers do not match,
a fresh copy is fetched from the server. WebDAV uses the
HTTP GET method, which can include the ETag of the cached
copy. Only if the client’s ETag is not current, the server
returns the current file (with its new ETag). In this case a
single round trip is required for checking and, if required,
getting a fresh copy. Alternatively, the time stamp of the last
modification of the file could be used for detecting file
changes at the server. This is the only method that can be used
with protocols that do not have any explicit support for version
comparison, like FTP. The freshness interval defines how long
after last checking with the server the cached copy is deemed
to be valid without a new check. In mobile networks the
freshness interval should be in the upper range of the values
used typically in fixed networks, for example 30 seconds for
files and 60 seconds for directories (reflecting the lower risk of
concurrent updates). Also, this value should be configurable,
as network properties such as cost and latency may vary
highly.

We have avoided changes to server-side implementations.
Server callbacks look like a promising way of increasing the
scalability of the system. Protocols for extending WebDAV
with such notifications have been proposed [5] [17]. It
remains to be seen how this work will progress and how
widely support for this feature will be implemented in
WebDAV servers. As was mentioned above, configuration of
mobile network operator’s firewalls may also need to be
changed to allow server initiated communication to mobile
devices.

B. Immediate File Access
We have relaxed the original whole-file caching principle so

that instead of always caching the whole file, we can build the
cache file from continuous blocks starting from the beginning
of the file and proceeding towards the end. There are good
motivations for this in multimedia-centric smart phones. For
example, the song title and artist name contained as metadata
within an MP3 file should be available even if the song will
not be played, so that a music player application can present an

informative song list to the user. When the song is then
selected for playing, the playing should ideally start before the
whole file is fetched and cached.

If the access protocol supports it, we build the cache file in
continuous blocks. In principle this means that when receiving
a read() request, we first fetch a certain amount of bytes from
the beginning of the non-cached portion until the request can
be fulfilled. Finally, when the file is wholly cached, it is
marked to be available also in disconnected mode. For
example, WebDAV uses the Range-header of HTTP GET for
this partial reading. We call this feature Immediate File
Access, as opposed to pure whole-file caching. An important
aspect to consider is the high latency of wireless networks.
Because of the high latency, it is not feasible to fetch a remote
file at exactly the same granularity that some application uses
to read more data from a file. So instead of fulfilling the byte
range requested by the application, we attempt to fulfill the
purpose of this read with minimal number of round trips.

This can be generalized in the following way: in order to
minimize the number of roundtrips needed to read a file, we
always fetch the file up to the next threshold. Threshold here is
defined as a point beyond which the file “probably” is not
needed (yet). In Symbian OS the first threshold value should
be 128, because the MIME-type recognizer architecture is
used so often, that it doesn’t make sense to ever fetch less (the
sample value is actually configurable, but 128 is the default
value that is used almost exclusively). For example, when the
Nokia 6600 Image Gallery application opens a certain JPEG
file, its first request is to read 32 bytes from the beginning of
the file. In this the case the first read fetches 128 bytes. We
avoid a long round-trip to the server if the next request is for
bytes 33-127 but lose only a small time in reading the first 32
bytes.

We have defined the next threshold after 128 to be MIME-
type dependant. It should cover possible metadata located at
the beginning of the file. After reading the first 128 bytes, we
have a good probability of knowing the MIME-type of the file,
either from the directory (collection) attributes information
sent by the WebDAV server (similar to “content-type” header
in standard HTTP) or from the Symbian recognizer
architecture. For each MIME type we have a threshold value,
which tells how many bytes from the beginning of the file we
assume to be metadata, and where the actual data begins. This
value is read from a configuration file. In addition to the
MIME type we take into account device application behavior
for that MIME type. For example, MP3 tag (ID3 tag) can in
theory be of arbitrary length, but we observed that the Nokia
9500 Media Player reads the first 8000-9000 bytes of the file
in order to display the song metadata, so we can set this limit
to 10 000 bytes. The configuration file allows us to easily tune
the threshold value for each device. It is enough for this value
to be a rough estimation. So with MP3 files the second
roundtrip would read the bytes 129-10000. This data allows
music players to use that MP3 file in a list of songs, and show

metadata such as artist, song name etc., without fetching the
whole file that can be several mega bytes of size.

Note that we could of course apply a more deterministic
approach, by reading a metadata length header, and then the
metadata itself. This would require two roundtrips to get the
metadata, but would allow us to read exactly right amount of
variable length metadata without considering things like
specific device application behavior. The penalty of the extra
roundtrip is not worth paying, unless the length of the
metadata can greatly vary. In practice we have noticed that this
is not the case at least currently.

Finally, when we assume that the read has proceeded
beyond the metadata to the actual content data, depending on
the file MIME-type we may want to read the data itself in a
mode that approaches streaming (again, a typical example is an
MP3 file). More specifically, we perhaps would like to return
control to the application as soon as possible and fetch the
remaining data in the background (read-ahead caching). The
initial read can be equal to the number of bytes the application
has requested from the File Server, if the network connection
has high bandwidth and low latency or the application
indicates that it does its own buffering. Otherwise we should
read a little bit more (e.g. using formula f(x) = x + C, or f(x) =
n*x, where x is the number of bytes originally requested, C is
a constant and n is a factor between 1 and 2).

Sometimes the MIME-type specific metadata is located at
the end of the file. For example, the original MP3 tag used the
last 128 bytes of the file as metadata. As was mentioned
above, we want to keep the cache file continuous. Because of
this, a read that goes beyond the currently cached portion will
by-pass the cache, i.e. the requested data will be fetched but
will not be added to the cache. In practice, we have noticed
that the requirement for continuous access is not too limiting
and simplifies cache management. With multimedia files
sequential access is far more common than random access and
in order to support streaming, metadata is usually at the
beginning of the file.

C. Disconnected Operation
1) Disconnected Access

Support for disconnected operation allows the user to access
files even when there is no network connection to the remote
file server. The following requirements have to be taken into
account:

• Connectivity awareness: the system must be able
to adapt to varying levels of connectivity.

• Cache Persistence: cached (meta) data must not be
lost in system shut down (whether graceful or not)

• Cache Populating (aka “hoarding”): there should
be means for deciding on the contents of the cache
and mechanisms for populating the cache (e.g.,
before voluntary disconnection).

• Reintegration: when the remote file server becomes
available, the changed objects in the local cache

must be synchronized with their replicas in the
remote store – this includes conflict detection and
resolution.

As a prerequisite for disconnected operation, the system has
to be aware of the state of the connection to the remote server.
We define three modes of connectivity: strongly connected
(like WLAN), weakly connected (a connection with high
latency, low bandwidth, or high costs, like GPRS), and
disconnected. In weakly connected mode, cache misses are
served by fetching data from the remote file server. However,
locally updated files are not propagated to the server. This is
similar to the “write-disconnected mode” in Coda.

The contents of filesystem objects are stored in the cache as
normal files. However, in a system crash, the related metadata
would be lost unless it was stored persistently. Therefore, we
maintain a persistent copy of the metadata on the disk. The
metadata of changed filesystem objects is flushed to disk after
each operation on the interface between RSC File System and
the Remote File Engine. The size of each externalized
metadata entry is typically around 100 bytes.

The client’s cache, which has a configurable maximum size,
is filled with files as they are fetched from the remote storage.
On-demand cache filling is controlled with a prioritized LRU
cache management scheme that operates across all mounts.
However, before a deliberate disconnection from a storage
server, the user may want to download the files that he/she will
work with while disconnected. We support this feature, called
(explicit) hoarding, by allowing the user to classify selected
files as having a higher priority. More sophisticated hoarding
could be implemented by using a Coda-like “hoard database”
that lists the important files or directories.

Reintegration is performed when a volume in the Remote
File Engine moves from a (write-)disconnected state to
strongly connected state. The purpose of reintegration is to
propagate the client-side modifications to the server.
Downloading for local cache update could be included as part
of the reintegration. However, we currently rely on on-demand
fetching of fresh server contents. Because the server is a
standard WebDAV (or FTP) server, the whole procedure has
to be conducted by the client. In the reintegration phase,
WebDAV locking can be used on the relevant objects to
prevent collisions with other clients.

2) Recording Modifications while Disconnected

On reconnection to the server, the current states of the client
and server replicas could be compared to find out the
differences between them. Such a “state-based” comparison
would be inefficient if only a small fraction of cached files has
been changed, and it would leave certain conflicting updates
ambiguous (e.g., we would not know whether a file that only
exists in one replica has been created on that replica or deleted
from the other one). Our approach is “trace-based” [6], but
only at the client side. In comparison, Coda is also trace-based;
the client maintains a modification log, but reintegration is

essentially performed at the server that processes the log.
In disconnected mode, Remote File Engine records effects

of mutating filesystem operations as part of the objects’
metadata. Each object carries an indication of mutations that
have been performed on the object and history information
about the state of the object that prevailed before
disconnection. The history information includes identification
of the object’s original parent and its path, the object’s name,
and version information (last modification time, size, and
unique file instance identifier if available). This state of an
object is saved when it is about to change for the first time.
The recorded state is later needed for conflict detection and for
generating appropriate actions at reintegration. Our
rudimentary operation recording does not preserve the order of
the operations, as a fully-fledged modification log would do.

3) Conflict Resolution

We model conflicts between partitioned replicas similarly to
Coda [7] and Ficus [8]. However, in our case, the client and
server replicas are not symmetric in terms of modification
logging, and the node identifiers of files at the server are not
visible to the client. Therefore, it is not feasible for the client
to find out the original name and location of files that have
been renamed and/or moved at the server. Instead, such files
appear as new files, and the original files appear to have been
removed. Consequently, we have a conflict matrix along the
dimensions of file operations on filesystem objects at the client
(create, update, remove, and rename) and at the server (create,
update, and remove).

The types of directory conflicts are the same as the types of
file conflicts, except that name conflicts only appear with
Rename operations, and update/update conflicts are assumed
to be registered as conflicts in the immediate descendants

Conflict detection is based on client’s original and current
cache state and the remote file server’s repository state after
reconnection to the server. To detect conflicts, the client
preserves the original state of each object that it modifies.
Then it is possible to check whether the server has modified
the same object during disconnection.

We require that, whenever possible, resolution should be
transparent to the applications and automatic without needing
user intervention, even though the user should be notified or
otherwise become aware of resolved conflicts. The current
implementation produces a human-readable log of the detected
conflicts and the results of the automatic resolution.

Conflict resolution applies the “no lost update” principle,
where local and server-side updates to files and directories
must not be lost. Still, when applying this principle we can
have variation in the outcome of the resolution. This variation
is controlled by a resolution policy, which can be

• server copy dominates
• client copy dominates
• last writer wins

Because updates must not be lost, there will be situations

where we have two instances of the “same” file system object.
One of them should be treated as the primary copy while the
other one is the secondary copy. The resolution policy only
determines whether the server’s or the client’s copy will be the
primary copy.

When “last writer wins” policy is used, the clocks of the
parties have to be synchronized. This policy is only applicable
if a comparison can be made between both replicas, which is
not true for files that have been deleted from the server. Then
we must fall back to either of the two dominance policies. In a
conflict, the primary copy will retain its name, whereas the
secondary copy will adopt the name of the primary copy with a
specific suffix and version number appended to the name. For
example, the secondary copy of “xyzzy.txt” could be renamed
as “xyzzy_conflict_01.txt”. The reintegration procedure
produces a log of synchronization operations and resolved
conflicts. If the automatic resolution has not been satisfactory,
the user has to make any desired corrections manually.

VI. EXPERIENCES WITH USING THE FRAMEWORK
We have demonstrated use of remote file systems with

various types of settings, like
• Mounting a WebDAV or FTP repository from a

network server (e.g., over GPRS or WLAN).
• Mounting a WebDAV repository from another

phone (over Bluetooth PAN/WLAN).
The fundamental idea in promoting access of remote

resources through the File Server functions has been to allow
applications to access those resources with the same existing
APIs that they already use with local file systems (access
transparency). The location of the resources would then be
transparent to the applications, and adapting them to remote
file access would only require minor changes, if any.

However, as we have noticed with the enhanced
Filebrowser, the network delays cannot always be ignored at
the user interface (Section IV.C). Also, the Application
architecture or the applications themselves may falsely assume
that file access is always fast.

A. Synchronous File Server API calls
An important design decision in Symbian OS has been to

optimize the system for event handling. Application
framework is such that each native application is a single
event-handling thread. Inside the thread so-called active
objects are used to handle events non-preemptively.

The main stumbling block in the access transparency ideal
has perhaps unsurprisingly turned out to be the fact that many
applications exploit the assumption that file operation
functions are fast by calling them synchronously. This leads to
simpler programming, as the application programmer does not
have to implement asynchronous waiting for file system
operations. Moreover, the current Symbian File Server API
does not even have an asynchronous variant for all the
functions.

Alas, calling a long-standing operation synchronously is
disastrous for a single-threaded UI application in Symbian OS,
as the wait will happen inside a non-preemptively scheduled
active object, and will thus block all the active objects in the
sole thread. The application cannot handle other events.
Important events that it must handle come for example when
the application must go to background (user wants to switch
applications, an incoming call, etc.).

To alleviate this problem we have modified our framework
so that remote file operations which cannot be called via an
asynchronous File Server API function take as little time as
possible (e.g., call to open() checks that the file is available at
the server and the user is allowed to open it in the requested
mode, only read(), for which there is an asynchronous variant,
fetches the actual data).

The strict requirement for timely response is inherent in
Symbian OS. Therefore, the programming guidelines
recommend using asynchronous operations when performing
tasks with potentially long delays. Consequently, the use of
asynchronous system calls is a norm in network socket
programming, for example. Many applications already use also
asynchronous file operations, as there are situations where
even accessing local file systems may take several seconds.

B. Performance
We measured throughput of the Remote Storage Client with

a Nokia 9500 phone by using WLAN (802.11b). We accessed
files on a Linux laptop (IBM ThinkPad 600) that was running
a WebDAV-enabled Apache 2.0 server. We performed reading
and copying of a single file with varying size. Each
measurement was repeated three times and averages of the
measured values were computed. For comparison we made
measurements with both a “cold” and a “hot” cache. The
results were compared with the phone’s native filesystem (C-
drive) and with a Remote Storage Client framework loopback
mount where the C-drive is mounted through the framework as
a “remote” filesystem.

The results of the measurement are shown in Figures 3 and
4.

Cold Read by File Size

1000

10000

100000

1000000

10000000

1024 2048 4096 8192 16384 32768 65536 131072 262144

File size

R
at

e
(B

/s
)

C-drive
Loopback
WLAN

Fig. 3. Cold Read

Hot Read by File Size

1000

10000

100000

1000000

10000000

1024 2048 4096 8192 16384 32768 65536 131072 262144

File Size

R
at

e
(B

/s
)

C-drive
Loopback
WLAN

Fig. 4. Hot Read

The cold read throughput of a 16384-byte file was 8-9 kB/s
via WLAN. The throughput is better with larger files and
poorer with smaller files. With a file size of 1024 bytes the
throughput degraded to 155 bytes/second. With larger files the
rate approached 100 kB/s. The C-drive curves in the two
figures should be identical. The variation is mainly due to the
tick granularity (1/64 s) of the system’s timer that was used in
the measurements.

Hot read uses cached files, so it is independent of the
transport medium but shows the caching overhead. Since
caching uses the File Server client API, reading a cached file
results in two passes through the API.

WebDAV’s use of XML makes it a verbose and thus
bandwidth consuming protocol. More importantly, in order to
optimize throughput in high-latency wireless networks, the
number of round-trips should be minimized. In our
experimental runs, the round trips typically consisted of
queries of the file state by using WebDAV’s PROPFIND
method in addition to the actual file operations. We still have
some room for optimization. For example when the remote
storage client framework receives delete() request from the
File Server, it first sends via the WebDAV protocol plug-in
PROPFIND to check whether the file exists on the remote
server and only then sends DELETE to delete it. The lesson
learned is that each protocol plug-in implementation must be
optimized by carefully examining when the error codes
returned by the server for certain operation can be directly
mapped to the File Server API error codes, and when some
extra queries are needed. For example in this case it is enough
to just send WebDAV DELETE operation, as HTTP status
codes have enough information to distinguish between the
most important File System API errors for this operation. For
example “404 NOT FOUND” becomes Symbian system error
“KErrNotFound” and “423 FORBIDDEN” becomes
“KErrAccessDenied”.

WebDAV file locking was not enabled during the
measurements, although in practice, a file that is being copied
to the server should be locked at the server until the file has
been fully copied. Therefore, actually, an empty file is put on
the server in order to have some resource to lock before
putting the file contents. Some servers may allow creating a

file by setting a lock to a non-existing resource, which would
obviate putting the empty file.

VII. RELATED WORK
A standard way to access remote storage is via a DFS. One

of the well-known DFSs with disconnected operation support
is Coda [1], which is a derivative of Andrew File System
(AFS). On each Coda client, a cache manager, called Venus,
manages persistently cached whole files and directories. The
clients can access cached filesystem objects in a disconnected
mode and fetch files in a weakly connected mode. In
disconnected mode the updates are immediately applied to the
locally cached objects and also logged for later propagation to
servers when network connectivity is restored. In the weakly
connected mode, the updates can be slowly sent to the server
with a mechanism called trickle reintegration. The remote
servers that can be replicated for higher performance and fault
tolerance, reintegrate conflicting updates originating from
different clients.

The Little Work project [9] added disconnected operation
support to AFS. The design approach is similar to ours. That
is, there was a relatively widely available distributed file
system that had to be made usable by mobile clients even
when there was no connection to the server – and this had to
be done without modifying the servers. Consequently, the DFS
client is solely responsible for disconnected operation. Then
conflict management, and populating the cache and keeping it
persistent become issues for the client. Little Work resolves
conflicts automatically by renaming the conflicting entities and
putting orphaned entities in a central “orphanage”. We also
automate conflict resolution by renaming. However, we try to
reconstruct removed directory paths for orphans.

InterMezzo [10] is a newer DFS that is inspired by Coda. It
utilizes existing journaling file systems (like ext3 in Linux) in
transaction handling and guaranteeing consistency.
Synchronization is achieved by using a special program called
InterSync, which processes a modification log and fetches
modified files to the server by using HTTP. Synchronization
can be symmetric with both the client and the server device
running a web server. By virtue of the layered approach,
Intermezzo is relatively simple, and it supports disconnected
operation, which makes it suitable for mobile environment. A
primary design goal of InterMezzo is reusing standard
protocols, but its implementation is tightly coupled to Linux,
which makes it challenging to deploy it in other platforms.

WebNFS and later NFSv4 [4] introduced to Sun’s popular
NFS family of DFSs properties that allow easier use of NFS in
Internet. The challenges were similar to those we have
targeted; e.g. high latency and access through Internet
firewalls. Disconnected operation was omitted from NFSv4
requirements in the design phase [16].

Data synchronization is an integral function in a DFS that
supports disconnected operation, but synchronization can also

be performed independently of the file system. Such flexible
multi-platform utilities include Unison [11] and rsync [12], for
example. These user-level programs may optimize data
transfers but they cannot take advantage of the modification
logging that is built-in in the underlying file systems. Another
synchronization framework is SyncML [13], which is
specified in OMA (Open Mobile Alliance) for standardizing
the way data synchronization is handled on mobile devices.
SyncML supports synchronization of any data (expressed as a
collection of key-value pairs). The keys are unique identifiers
of the objects. If the objects are file-system entities that can
only be identified with their path names there should be some
mechanism for constructing the unique identifiers and
mapping these to path names. SyncML assumes that the client
and the server maintain a change log and indicate propagation
of logged events with “anchors”. The protocol also has
provisions for notifying of conflicts during synchronization.

WebDAV has been used as a transport protocol in davfs2
remote file system for Linux [14]. Besides sharing the same
transport protocol, we also use a similar implementation
architecture, which is inherited from Coda. However, davfs2
does not cache files. Other products that integrate WebDAV
into file system in Desktop OSs include Novell NetDrive 6
(part of Novell NetWare and Novell iFolder products) for
Windows and Apple iDisk for MacOS. They also support
disconnected operation.

VIII. FUTURE WORK
Our immediate plans for the future involve areas such as

access control, buffering and usability. Reintegration can be
improved with more fault-tolerance, background operations
(compare with Coda’s trickle reintegration), delta transfer of
changes only, etc. For access control we are considering
implementing WebDAV ACL access control protocol [15] to
enable flexible yet safe sharing of information. We also plan to
follow the development of proposed protocols that could be
used to implement WebDAV server callbacks [5] [17], and
possibly adopt one of them, as we see callbacks as a very
useful optimization in high-latency wireless networks. A
potential usability improvement could be adding multiple
mount points under a single drive letter.
 The new Symbian OS security architecture brings with it
new challenges. Applications allowed to access networking
services must have a specific privilege, called the
“NetworkServices capability”, granted to them. Among other
things this capability allows controlling which applications
may perform operations that cost the user money. Obviously,
our Remote File Engine must have the NetworkServices
capability. Since it acts on behalf of client applications, if it
performed no access control on its own, even applications
without the NetworkServices capability could use remote
drives and thus make operations that incur a cost to the user.
But, since the client application requests are routed via the File

Server, the Remote File Engine is not explicitly aware of the
identity of the client or the set of capabilities the client holds.
Thus, the Remote File Engine cannot make access control
decisions based on the capability set of the client application.
This type of transitive authorization is a general problem. To
allow a general solution, intermediate servers must pass
information about the capabilities held by the clients to
downstream servers: for example, the Symbian File Server
should pass with each operation the capabilities of the client
application to the file system plug-ins (our file system plug-in
could then pass them on to the Remote File Engine).

An easy solution then would be to deny remote requests if
the client application does not have the NetworkServices
capability. However, this solution would perhaps be
unnecessary restrictive. Note that mounting remote storages
happens by calling directly Remote File Engine API (see Fig.
1). In this case the Remote File Engine is aware of the
capability set of the client application, and denies the mount
request unless the client application has the NetworkServices
capability. Thus any client application is not able to open
network connections to arbitrary hosts using arbitrary
protocols, but can only use the existing mounts.

 Our framework has two separate privileges, mounting and
accessing remote storages, but the privilege granularity in the
system does not easily allow making a difference between
them. If the main concern is spending user’s money, these
privileges undeniably become very closely related, and can be
expressed as one. Finding an acceptable but not overly
restrictive solution to this problem is still an open issue.

IX. CONCLUSION
In this paper, we have described the design and

implementation of a remote storage framework on Symbian
OS. We have used this framework to implement filesystems
based on WebDAV and FTP. We see WebDAV as a very
good protocol choice since, as an HTTP extension, it is widely
deployed by existing HTTP servers, yet it provides a good
base for building both an online and offline distributed
filesystems. Also firewalls usually allow HTTP packets to pass
through, so WebDAV can immediately be used in many
environments.

Our work is inspired and informed by previous work like
Coda [1]. We described why Coda couldn’t be used directly in
our target scenarios and environments. We then described how
we adapted the Coda concepts to suit our needs. The
framework is based on a whole-file fetching and whole-file
caching scheme. However, it also implements configurable
support for “immediate file access”. This facilitates operation
of applications that get metadata of a file by reading a small
part at the head of the file and/or need streaming-type access to
contents without first caching the whole file. The system also
allows disconnected operation with support for client-
controlled reintegration and conflict resolution.

ACKNOWLEDGMENT
The authors wish to thank Seamus Moloney for his help in the
early phases of the Remote Storage Client framework
development.

REFERENCES
[1] M. Satyanarayanan, “Coda: A highly available file system for a

distributed workstation environment”, in Proceedings of the Second
IEEE Workshop on Workstation Operating Systems, September 1989.
Available:
http://www-2.cs.cmu.edu/afs/cs/project/coda/Web/docs-coda.html

[2] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen, "HTTP
Extensions for Distributed Authoring - WEBDAV", IETF RFC 2518,
February 1999. Available:
http://www.ietf.org/rfc/rfc2518.txt?number=2518

[3] J. Postel, J. Reynolds, “File Transfer Protocol”, IETF RFC 959, October
1985. Available:
 http://www.ietf.org/rfc/rfc959.txt?number=959

[4] Brian Pawlowski, Spencer Shepler, Carl Beame, Brent Callaghan,
Michael Eisler, David Noveck, David Robinson, Robert Thurlow, “The
NFS Version 4 Protocol”, 2nd International SANE Conference, May 22 -
25, 2000 MECC, Maastricht, The Netherlands.

[5] J. Hildebrand, P. Saint-Andre, “Transporting WebDAV-Related Event
Notifications over the Extensible Messaging and Presence Protocol
(XMPP)”, IETF Internet Draft draft-hildebrand-webdav-notify-01
(expired), November, 2004.

[6] Trevor Jim, Benjamin C. Pierce, and Jérôme Vouillon, “How to Build a
File Synchronizer”. Manuscript, February 2002. Available:
http://web.mit.edu/6.033/www/papers/unisonimpl.pdf

[7] Puneet Kumar and Mahadev Satyanarayanan, “Log-based directory
resolution in the Coda file system”, Tech. Rep. CMU-CS-91-164, School
of Computer Science, Carnegie Mellon Univ., 1991

[8] Peter Reiher, John S. Heidemann, David Ratner, Gregory Skinner, and
Gerald J. Popek, “Resolving File Conflicts in the Ficus File System”. In
USENIX Conference Proceedings, pp. 183-195. Boston, MA, USENIX.
June, 1994,

[9] L. B. Huston and P. Honeyman, “Disconnected Operation for AFS”. In
Proc. First USENIX Symposium on Mobile and Location-Independent
Computing, August 1993.

[10] Peter Braam, “Intermezzo: File synchronization with Intersync”, version
0.9.3, March 02. Available:
http://www.inter-mezzo.org/docs/intersync.pdf.

[11] Benjamin C. Pierce and Jérôme Vouillon., “What's in Unison? A formal
specification and reference implementation of a file synchronizer”.
Technical Report MS-CIS-03-36, Dept. of Computer and Information
Science, University of Pennsylvania, 2004. Project home:
http://www.cis.upenn.edu/~bcpierce/unison/

[12] Andrew Tridgell and Paul Mackerras, “The Rsync algorithm. Tech. Rep.
TR-CS-96-05”, The Australian National University, June 1996. Project
home:
http://samba.anu.edu.au/rsync/

[13] OMA SYNCML,
http://www.openmobilealliance.org/tech/affiliates/syncml/syncmlindex.ht
ml

[14] WEB-DAV Linux File System (davfs2),
http://dav.sourceforge.net/.

[15] G. Clemm, J. Reschke, E. Sedlar, J. Whitehead, “Web Distributed
Authoring and Versioning (WebDAV) Access Control Protocol”, IETF
RFC 3744, May 2004. Available:
http://www.ietf.org/rfc/rfc3744

[16] S. Shepler, “NFS Version 4 Design Considerations”, IETF RFC 2624,
June 1999. Available:
http://www.ietf.org/rfc/rfc2624.txt?number=2624

[17] Henning Qin Jehøj, Niels Olof Bouvin, Kaj Grønbæk, “AwareDAV: A
Generic WebDAV Notification Framework and Implementation”,
Proceedings of the 14th international conference on World Wide Web,
Chiba, Japan, 2005, pp. 180-189.

