
 

  
 

 

 
 
Abstract— The ability to access remote file storage from mobile 

devices enables a number of new use cases for storing and sharing 
data. We describe the design and implementation of a Remote 
Storage Client framework on Symbian OS, the leading smart 
phone OS on the market. Our work is inspired and informed by 
previous work like Coda [1]. We describe why Coda cannot be 
used directly in our target scenarios and environments.  We then 
describe how we adapted the Coda concepts to suit our needs.  
The advanced features supported by the framework include 
disconnected operation with whole-file caching and immediate 
file access (adapting whole-file caching principle to multimedia-
centric smart phones). Using this framework, we have 
implemented Symbian OS remote filesystems based on WebDAV 
and FTP. 
 

Index Terms—disconnected operation, remote file systems, 
Symbian OS, WebDAV 
 

I. MOTIVATION 
Carol is on vacation. She takes lots of pictures with her 

camera phone and fills up almost all the available memory. 
When she comes back home, her phone detects the presence of 
a high bandwidth Internet access point and automatically 
moves her new pictures to her Internet photo album service 
storage space. So when she sits at her laptop and opens her 
photo album, she can already see the new pictures. She starts 
her photo editing software and makes a collage from some of 
the nicer pictures. 

Then Carol goes for an evening out and meets Alice. Carol 
wants to show off the collage she made earlier. In her phone’s 
media gallery application, she chooses the remote storage tab, 
locates the collage picture and opens it. It takes a few seconds 
for the image to download over the cellular network 
connection. Alice is impressed by the collage. However, Carol 
insists on adding an audio track to the collage and picks a 
suitable MP3 from her home server, which she then shortens 
to fit the collage better.  Finally, Carol grants Alice access to 
her Internet photo album.  Alice now sees Carol’s Internet 
photo album as a new tab in her phone’s media gallery and is  

 
 

 
 
 
 

able to view and edit pictures. 
These types of usage scenarios that involve storing, 

retrieving and sharing require support for remote storage 
access in mobile devices. This paper gives a brief overview of 
our work in this area. 

II. INTRODUCTION 
Data objects like images and videos are typically stored as  

files in a file system. The scenario above implies that it must 
be possible to seamlessly access and modify files from several 
devices.  Applications access files using a standard file system  
API. Therefore it is logical to integrate remote storage access 
into the file system. Files could either be transferred directly 
from device to device or by using a network server.  

We have developed a framework for accessing remote 
filesystems with Symbian OS phones. In remote access, a 
storage server exports a part of its filesystem, which the phone  
mounts. The filesystem appears as a new drive on the phone. 
The storage server can be on a centralized network server or 
on another phone.  The advanced features we have developed 
include disconnected operation, similar to Coda distributed file 
system [1], but using more widely deployed protocols (e.g. 
WebDAV [2]). Disconnected operation means that the client 
device can continue to use cached files even when the server is 
out of reach.  This implies aggressive caching. We have also 
developed advanced caching policies that attempt to support 
disconnected operation and high-latency wireless networks by 
utilizing whole-file caching whenever possible. However we 
must take into account that ensuring smooth operation of a 
multimedia centric smart phone sometimes requires quick 
access to a portion of data. 

In this paper, after setting requirements (Section III), we 
describe the components of the Remote Storage Client 
framework (Section IV). We examine some specific issues 
related to the system in Section V. We then give the first 
experiences in using the framework in a Symbian OS smart 
phone (Section VI). Section VII describes related work, and 
finally, Section VIII outlines directions for future work. 

III. REQUIREMENTS 
Our use cases with mobile devices suggest a distributed file 

system (DFS) that supports high data availability with 
disconnected operation. The client devices in our scenarios 
may use bearers with different characteristics: cellular data 
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bearers like General Packet Radio Service (GPRS) have low 
bandwidth, high latency, and may have volume-based 
charging, whereas local area bearers like WLAN have 
opposite characteristics. With a view to easing deployment, we 
wanted to use standardized protocols, and preferably not 
require server-side changes.   

At first glance, Coda would seem like a suitable DFS that 
supports disconnected operation with aggressive caching. 
However, we decided not to use Coda for the following 
reasons: 

• It does not use standard protocols, and its 
deployment is marginal outside the academic 
community. 

• It was mainly designed for high-bandwidth, low-
latency bearers. 

 
Although we chose not to use Coda as is, we adopted its 

basic ideas, like optimistic concurrency control and whole-file 
caching. As we discuss below, we had to refine or adapt Coda 
notions to suit the constraints of our target environment. 
WebDAV has been our primary access protocol. WebDAV is 
an HTTP extension, and as such has quickly gained acceptance 
and deployment. It uses reliable TCP/IP communication, so we 
do not have to take care of e.g. packet retransmissions 
ourselves. Packets using standard HTTP ports (80 and 443) are 
usually able to pass through firewalls without a need for extra 
configuration. This design has also some drawbacks: Perhaps 
most importantly, we miss server-side callbacks that for 
example Coda and NFSv4 [4] have demonstrated to be a 
useful optimization in cache consistency management. 
However, mobile network (like GPRS) operators do not 
typically allow incoming packets from Internet anyway, but 
only allow replies that promptly follow mobile device initiated 
communication. We also miss the high availability that 
replicated Coda servers can offer. Moreover, by relying on 
standard file transfer protocols, we can only refer to files by 
their path names and cannot assume any path-independent 
identifiers. 

Fetching and caching whole files is a natural consequence 
of the requirement to support disconnected operation. 
However, applications sometimes only peek at a part of file 
contents without any intention to consume the whole file. For 
example, Symbian OS uses a recognizer architecture to figure 
out the MIME type of a file by a reading a small data sample 
from the beginning. Media player applications read metadata 
embedded into the media files like MP3 to present an 
informative listing of the contents to the user. When Coda-like 
whole-file caching is used, attempts to read a few bytes from 
the beginning of the file may result in a long delay before the 
whole file is downloaded. Therefore, our system should 
support immediate file access features to enable these cases. 
Thus we can enjoy some benefits of NFS-like systems, which 
fetch and cache file blocks. 

IV. REMOTE STORAGE CLIENT FRAMEWORK 
Symbian OS uses micro-kernel architecture. The file 

systems in Symbian OS are managed by the Symbian OS File 
Server, which is a user level process. Our Remote Storage 
Client (RSC) framework integrates remote file storages into 
the File Server. The framework uses cache in a local file 
system, so that disconnected operation can be supported. The 
framework consists of platform components and applications 
(see Fig. 1). 
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Fig. 1.  Remote Storage Client Framework Components 

The platform components include a remote file system 
extension to Symbian OS File Server and a Remote File 
Engine. Remote file access protocols attach to the engine 
through protocol plug-ins (WebDAV and FTP in the figure). 
For mounting and remote file management we have 
implemented a separate Mounter application and an enhanced 
Filebrowser. 

A. RSC File System 
File systems in Symbian OS operate within the File Server. 

Typically, FAT or LFFS file system is used for local media, 
like the phone’s flash memory or a removable memory card. 
Each filesystem is mounted on a drive letter. Requests for 
different drives are handled by different File Server threads. 
The File Server also offers an interface for dynamically 
installable file systems to support access to other media, like 
remote file storages over a network. Remote file system code 
is also run in a dedicated thread, which makes it possible to 
recur to the services of the local file systems from the remote 
file system code. This makes it possible to easily cache remote 
files. 

Our RSC File System attaches to the above-mentioned File 
Server’s interface for dynamically installable file systems. Its 
design was originally inspired by Coda. In Coda 
implementations for UNIX variants, the operating system 
kernel contains a stub file system interface that delegates 
remote file access operations to a user-space process (called 
Venus) that performs all communication with remote storage 
servers. We implemented a corresponding architecture where 
the RSC module translates operations on Symbian-defined file 
system objects into file access primitives that are similar to 
those used at Coda’s Kernel-Venus interface. These primitives 



 

define the interface between RSC File System and the Remote 
File Engine.  

In Coda the likely motivation for this separation is that only 
a small part of the code runs in a privileged kernel mode, and 
most of the code is easily portable user level code. In Symbian 
micro-kernel architecture File Server is also a user-level 
process. However, this separation also has a security benefit in 
that the Remote File Engine does not need all the privileges of 
the File Server. This is relevant because Symbian OS version 9 
introduced a security architecture where different processes 
can be assigned different privileges. The File Server is a part 
of Trusted Computing Base (TCB) and has significant 
privileges. TCB is kept as small as possible. By separating the 
Remote File Engine from the File Server, we avoid the need 
for granting TCB privileges to the Remote File Engine. 

B. Remote File Engine 
The Remote File Engine takes care of remote file fetching 

and caching. It has been implemented as a Symbian OS server, 
i.e., as a separate process. This solution adds the process-
switching overhead related to client-server communication but, 
on the other hand, it is flexible by allowing specification of 
new APIs to the engine’s remote access functions that could 
not be reachable through the Symbian OS File Server API. For 
example, the engine provides a dedicated API for controlling 
mounting operations. This API is used by our Mounter 
application (as indicated in Figure 1). 

When remote file storage is to be mounted the engine 
receives connection parameters in the form of a URI, which, 
by definition, can convey all information that is needed for 
attaching to a storage server: file access protocol (service 
name), server name, TCP/IP port number, username, 
password, and root directory. For each new mount, the engine 
instantiates a management object, which then on demand loads 
a protocol plug-in module that implements the file access 
protocol specified in the URI. 

A protocol plug-in module in our framework is a 
polymorphic DLL that implements our access interface. The 
interface consists of primitive file system operations. If a 
remote storage can be accessed in a meaningful way using this 
interface, it can be presented as a remote drive in Symbian File 
Server using this framework. We have implemented protocol 
plug-in modules for WebDAV [2] and FTP [3], and for 
accessing the phone’s local filesystem (C-drive) through the 
Remote File Engine. The local filesystem plug-in is used only 
for testing. 

C. Enhanced Filebrowser 
Typical user interface applications for such system as 

described here include a mount management application, 
which allows the user to define mount configurations and 
mount and unmount remote storages, as well as applications 
used to access the mounted remote storages. The basic 
application is a File Browser. 

A guiding principle in Coda was location transparency: the 
user does not have to know whether she is accessing a file 
directly from the server, or from the local cache. We argue that 
this is not a reasonable assumption when the communication 
bearer has low-bandwidth or has volume-based charging. 
Exposing caching via the user interface is a somewhat 
controversial issue. However, usage of remote files involves 
first downloading them from the network. In mobile networks, 
this can be a time consuming and relatively expensive 
operation. Therefore, it is important to point out to the users 
that the file in question actually resides on the network.  

We have enhanced a file browser for Symbian based S60 
smart phones with features that make the user aware of the 
caching state of files and, to some extent, allow the user to 
control caching. Our enhanced Filebrowser indicates which 
files or directories are remote and which have already been 
fetched and locally cached (the antenna sign in Figure 2). 

 

 
Fig. 2.  Enhanced Filebrowser 

 Our rudimentary caching control allows the user to 
explicitly fetch selected files into the local cache. The user can 
also refresh a cached file or mark a file with a sticky tag that 
makes the file persistent in the cache. 

V. DESIGN ISSUES 

A. Cache Consistence 
Remote Storage Client should retain cache consistence in 

cases where multiple client devices access the same files at the 
same time. When a file is fetched from the remote storage and 
cached, the local copy in the cache becomes stale if the file in 
the remote storage changes. Moreover, if also the local copy 
then changes and is eventually transferred back to the server, a 
conflict will occur. 

Cache invalidation can be avoided if the file in the remote 
storage is locked. However, locking is overkill when a file is 
only opened for reading. If locking is not used, the validity of 
the cache should be guaranteed by some other means. For 
example, the remote file server could notify the client of 
changed files. This mechanism is used in Coda, where the 



 

server commits to send the notification, called “callback 
promise”. Also NFSv4 uses a variation of this mechanism. 
Alternatively, the client could check cache validity when the 
lifetime of the cached data expires (such mechanism is used in 
earlier versions of NFS, for example). However, while the 
client is disconnected from the server and the client is 
optimistically allowed to access cached files, cache validity 
cannot be verified and conflicting updates cannot be detected 
(this is discussed in Section C). 

We have implemented a freshness interval based polling 
mechanism that only involves the client side. Each time a 
cached copy is opened, and if the validity of the cached copy 
has expired, the validity is checked against the server. When 
unique file instance identifiers (for example ETags in 
WebDAV) are available, those are used to compare the local 
copy and the file on the server. If the identifiers do not match, 
a fresh copy is fetched from the server. WebDAV uses the 
HTTP GET method, which can include the ETag of the cached 
copy. Only if the client’s ETag is not current, the server 
returns the current file (with its new ETag). In this case a 
single round trip is required for checking and, if required, 
getting a fresh copy. Alternatively, the time stamp of the last 
modification of the file could be used for detecting file 
changes at the server. This is the only method that can be used 
with protocols that do not have any explicit support for version 
comparison, like FTP. The freshness interval defines how long 
after last checking with the server the cached copy is deemed 
to be valid without a new check. In mobile networks the 
freshness interval should be in the upper range of the values 
used typically in fixed networks, for example 30 seconds for 
files and 60 seconds for directories (reflecting the lower risk of 
concurrent updates). Also, this value should be configurable, 
as network properties such as cost and latency may vary 
highly. 

We have avoided changes to server-side implementations. 
Server callbacks look like a promising way of increasing the 
scalability of the system. Protocols for extending WebDAV 
with such notifications have been proposed [5] [17].  It 
remains to be seen how this work will progress and how 
widely support for this feature will be implemented in 
WebDAV servers.  As was mentioned above, configuration of 
mobile network operator’s firewalls may also need to be 
changed to allow server initiated communication to mobile 
devices. 

B. Immediate File Access 
We have relaxed the original whole-file caching principle so 

that instead of always caching the whole file, we can build the 
cache file from continuous blocks starting from the beginning 
of the file and proceeding towards the end. There are good 
motivations for this in multimedia-centric smart phones. For 
example, the song title and artist name contained as metadata 
within an MP3 file should be available even if the song will 
not be played, so that a music player application can present an 

informative song list to the user.  When the song is then 
selected for playing, the playing should ideally start before the 
whole file is fetched and cached.   

If the access protocol supports it, we build the cache file in 
continuous blocks. In principle this means that when receiving 
a read() request, we first fetch a certain amount of bytes from 
the beginning of the non-cached portion until the request can 
be fulfilled. Finally, when the file is wholly cached, it is 
marked to be available also in disconnected mode. For 
example, WebDAV uses the Range-header of HTTP GET for 
this partial reading.  We call this feature Immediate File 
Access, as opposed to pure whole-file caching. An important 
aspect to consider is the high latency of wireless networks. 
Because of the high latency, it is not feasible to fetch a remote 
file at exactly the same granularity that some application uses 
to read more data from a file. So instead of fulfilling the byte 
range requested by the application, we attempt to fulfill the 
purpose of this read with minimal number of round trips.  

This can be generalized in the following way: in order to 
minimize the number of roundtrips needed to read a file, we 
always fetch the file up to the next threshold. Threshold here is 
defined as a point beyond which the file “probably” is not 
needed (yet). In Symbian OS the first threshold value should 
be 128, because the MIME-type recognizer architecture is 
used so often, that it doesn’t make sense to ever fetch less (the 
sample value is actually configurable, but 128 is the default 
value that is used almost exclusively). For example, when the 
Nokia 6600 Image Gallery application opens a certain JPEG 
file, its first request is to read 32 bytes from the beginning of 
the file. In this the case the first read fetches 128 bytes. We 
avoid a long round-trip to the server if the next request is for 
bytes 33-127 but lose only a small time in reading the first 32 
bytes. 

We have defined the next threshold after 128 to be MIME-
type dependant. It should cover possible metadata located at 
the beginning of the file. After reading the first 128 bytes, we 
have a good probability of knowing the MIME-type of the file, 
either from the directory (collection) attributes information 
sent by the WebDAV server (similar to “content-type” header 
in standard HTTP) or from the Symbian recognizer 
architecture.  For each MIME type we have a threshold value, 
which tells how many bytes from the beginning of the file we 
assume to be metadata, and where the actual data begins. This 
value is read from a configuration file. In addition to the 
MIME type we take into account device application behavior 
for that MIME type. For example, MP3 tag (ID3 tag) can in 
theory be of arbitrary length, but we observed that the Nokia 
9500 Media Player reads the first 8000-9000 bytes of the file 
in order to display the song metadata, so we can set this limit 
to 10 000 bytes. The configuration file allows us to easily tune 
the threshold value for each device. It is enough for this value 
to be a rough estimation.  So with MP3 files the second 
roundtrip would read the bytes 129-10000. This data allows 
music players to use that MP3 file in a list of songs, and show 



 

metadata such as artist, song name etc., without fetching the 
whole file that can be several mega bytes of size. 

Note that we could of course apply a more deterministic 
approach, by reading a metadata length header, and then the 
metadata itself. This would require two roundtrips to get the 
metadata, but would allow us to read exactly right amount of 
variable length metadata without considering things like 
specific device application behavior. The penalty of the extra 
roundtrip is not worth paying, unless the length of the 
metadata can greatly vary. In practice we have noticed that this 
is not the case at least currently. 

Finally, when we assume that the read has proceeded 
beyond the metadata to the actual content data, depending on 
the file MIME-type we may want to read the data itself in a 
mode that approaches streaming (again, a typical example is an 
MP3 file). More specifically, we perhaps would like to return 
control to the application as soon as possible and fetch the 
remaining data in the background (read-ahead caching).  The 
initial read can be equal to the number of bytes the application 
has requested from the File Server, if the network connection 
has high bandwidth and low latency or the application 
indicates that it does its own buffering. Otherwise we should 
read a little bit more (e.g. using formula f(x) = x + C, or f(x) = 
n*x, where x is the number of bytes originally requested, C is 
a constant and n is a factor between 1 and 2).  

Sometimes the MIME-type specific metadata is located at 
the end of the file.  For example, the original MP3 tag used the 
last 128 bytes of the file as metadata. As was mentioned 
above, we want to keep the cache file continuous. Because of 
this, a read that goes beyond the currently cached portion will 
by-pass the cache, i.e. the requested data will be fetched but 
will not be added to the cache. In practice, we have noticed 
that the requirement for continuous access is not too limiting 
and simplifies cache management. With multimedia files 
sequential access is far more common than random access and 
in order to support streaming, metadata is usually at the 
beginning of the file. 

C. Disconnected Operation 
1) Disconnected Access 

Support for disconnected operation allows the user to access 
files even when there is no network connection to the remote 
file server. The following requirements have to be taken into 
account: 

• Connectivity awareness:  the system must be able 
to adapt to varying levels of connectivity. 

• Cache Persistence: cached (meta) data must not be 
lost in system shut down (whether graceful or not) 

• Cache Populating (aka “hoarding”): there should 
be means for deciding on the contents of the cache 
and mechanisms for populating the cache (e.g., 
before voluntary disconnection). 

• Reintegration: when the remote file server becomes 
available, the changed objects in the local cache 

must be synchronized with their replicas in the 
remote store – this includes conflict detection and 
resolution. 

As a prerequisite for disconnected operation, the system has 
to be aware of the state of the connection to the remote server. 
We define three modes of connectivity: strongly connected 
(like WLAN), weakly connected (a connection with high 
latency, low bandwidth, or high costs, like GPRS), and 
disconnected. In weakly connected mode, cache misses are 
served by fetching data from the remote file server. However, 
locally updated files are not propagated to the server. This is 
similar to the “write-disconnected mode” in Coda. 

The contents of filesystem objects are stored in the cache as 
normal files. However, in a system crash, the related metadata 
would be lost unless it was stored persistently. Therefore, we 
maintain a persistent copy of the metadata on the disk. The 
metadata of changed filesystem objects is flushed to disk after 
each operation on the interface between RSC File System and 
the Remote File Engine. The size of each externalized 
metadata entry is typically around 100 bytes. 

The client’s cache, which has a configurable maximum size, 
is filled with files as they are fetched from the remote storage. 
On-demand cache filling is controlled with a prioritized LRU 
cache management scheme that operates across all mounts. 
However, before a deliberate disconnection from a storage 
server, the user may want to download the files that he/she will 
work with while disconnected. We support this feature, called 
(explicit) hoarding, by allowing the user to classify selected 
files as having a higher priority. More sophisticated hoarding 
could be implemented by using a Coda-like “hoard database” 
that lists the important files or directories. 

Reintegration is performed when a volume in the Remote 
File Engine moves from a (write-)disconnected state to 
strongly connected state. The purpose of reintegration is to 
propagate the client-side modifications to the server. 
Downloading for local cache update could be included as part 
of the reintegration. However, we currently rely on on-demand 
fetching of fresh server contents. Because the server is a 
standard WebDAV (or FTP) server, the whole procedure has 
to be conducted by the client. In the reintegration phase, 
WebDAV locking can be used on the relevant objects to 
prevent collisions with other clients. 

 
2) Recording Modifications while Disconnected 

On reconnection to the server, the current states of the client 
and server replicas could be compared to find out the 
differences between them. Such a “state-based” comparison 
would be inefficient if only a small fraction of cached files has 
been changed, and it would leave certain conflicting updates 
ambiguous (e.g., we would not know whether a file that only 
exists in one replica has been created on that replica or deleted 
from the other one). Our approach is “trace-based” [6], but 
only at the client side. In comparison, Coda is also trace-based; 
the client maintains a modification log, but reintegration is 



 

essentially performed at the server that processes the log. 
In disconnected mode, Remote File Engine records effects 

of mutating filesystem operations as part of the objects’ 
metadata. Each object carries an indication of mutations that 
have been performed on the object and history information 
about the state of the object that prevailed before 
disconnection. The history information includes identification 
of the object’s original parent and its path, the object’s name, 
and version information (last modification time, size, and 
unique file instance identifier if available). This state of an 
object is saved when it is about to change for the first time. 
The recorded state is later needed for conflict detection and for 
generating appropriate actions at reintegration. Our 
rudimentary operation recording does not preserve the order of 
the operations, as a fully-fledged modification log would do.  

 
3) Conflict Resolution 

We model conflicts between partitioned replicas similarly to 
Coda [7] and Ficus [8]. However, in our case, the client and 
server replicas are not symmetric in terms of modification 
logging, and the node identifiers of files at the server are not 
visible to the client. Therefore, it is not feasible for the client 
to find out the original name and location of files that have 
been renamed and/or moved at the server. Instead, such files 
appear as new files, and the original files appear to have been 
removed.  Consequently, we have a conflict matrix along the 
dimensions of file operations on filesystem objects at the client 
(create, update, remove, and rename) and at the server (create, 
update, and remove). 

The types of directory conflicts are the same as the types of 
file conflicts, except that name conflicts only appear with 
Rename operations, and update/update conflicts are assumed 
to be registered as conflicts in the immediate descendants  

Conflict detection is based on client’s original and current 
cache state and the remote file server’s repository state after 
reconnection to the server. To detect conflicts, the client 
preserves the original state of each object that it modifies. 
Then it is possible to check whether the server has modified 
the same object during disconnection.  

We require that, whenever possible, resolution should be 
transparent to the applications and automatic without needing 
user intervention, even though the user should be notified or 
otherwise become aware of resolved conflicts. The current 
implementation produces a human-readable log of the detected 
conflicts and the results of the automatic resolution. 

Conflict resolution applies the “no lost update” principle, 
where local and server-side updates to files and directories 
must not be lost. Still, when applying this principle we can 
have variation in the outcome of the resolution. This variation 
is controlled by a resolution policy, which can be  

• server copy dominates 
• client copy dominates 
• last writer wins 

Because updates must not be lost, there will be situations 

where we have two instances of the “same” file system object. 
One of them should be treated as the primary copy while the 
other one is the secondary copy. The resolution policy only 
determines whether the server’s or the client’s copy will be the 
primary copy. 

When “last writer wins” policy is used, the clocks of the 
parties have to be synchronized. This policy is only applicable 
if a comparison can be made between both replicas, which is 
not true for files that have been deleted from the server. Then 
we must fall back to either of the two dominance policies. In a 
conflict, the primary copy will retain its name, whereas the 
secondary copy will adopt the name of the primary copy with a 
specific suffix and version number appended to the name. For 
example, the secondary copy of “xyzzy.txt” could be renamed 
as “xyzzy_conflict_01.txt”. The reintegration procedure 
produces a log of synchronization operations and resolved 
conflicts. If the automatic resolution has not been satisfactory, 
the user has to make any desired corrections manually. 

VI. EXPERIENCES WITH USING THE FRAMEWORK 
We have demonstrated use of remote file systems with 

various types of settings, like 
• Mounting a WebDAV or FTP repository from a 

network server (e.g., over GPRS or WLAN). 
• Mounting a WebDAV repository from another 

phone (over Bluetooth PAN/WLAN). 
The fundamental idea in promoting access of remote 

resources through the File Server functions has been to allow 
applications to access those resources with the same existing 
APIs that they already use with local file systems (access 
transparency). The location of the resources would then be 
transparent to the applications, and adapting them to remote 
file access would only require minor changes, if any. 

However, as we have noticed with the enhanced 
Filebrowser, the network delays cannot always be ignored at 
the user interface (Section IV.C). Also, the Application 
architecture or the applications themselves may falsely assume 
that file access is always fast. 

A. Synchronous File Server API calls  
An important design decision in Symbian OS has been to 

optimize the system for event handling. Application 
framework is such that each native application is a single 
event-handling thread. Inside the thread so-called active 
objects are used to handle events non-preemptively.  

The main stumbling block in the access transparency ideal 
has perhaps unsurprisingly turned out to be the fact that many 
applications exploit the assumption that file operation 
functions are fast by calling them synchronously. This leads to 
simpler programming, as the application programmer does not 
have to implement asynchronous waiting for file system 
operations. Moreover, the current Symbian File Server API 
does not even have an asynchronous variant for all the 
functions. 



 

Alas, calling a long-standing operation synchronously is 
disastrous for a single-threaded UI application in Symbian OS, 
as the wait will happen inside a non-preemptively scheduled 
active object, and will thus block all the active objects in the 
sole thread. The application cannot handle other events. 
Important events that it must handle come for example when 
the application must go to background (user wants to switch 
applications, an incoming call, etc.). 

To alleviate this problem we have modified our framework 
so that remote file operations which cannot be called via an 
asynchronous File Server API function take as little time as 
possible (e.g., call to open() checks that the file is available at 
the server and the user is allowed to open it in the requested 
mode, only read(), for which there is an asynchronous variant, 
fetches the actual data).  

The strict requirement for timely response is inherent in 
Symbian OS. Therefore, the programming guidelines 
recommend using asynchronous operations when performing 
tasks with potentially long delays. Consequently, the use of 
asynchronous system calls is a norm in network socket 
programming, for example. Many applications already use also 
asynchronous file operations, as there are situations where 
even accessing local file systems may take several seconds.  

B. Performance 
We measured throughput of the Remote Storage Client with 

a Nokia 9500 phone by using WLAN (802.11b). We accessed 
files on a Linux laptop (IBM ThinkPad 600) that was running 
a WebDAV-enabled Apache 2.0 server. We performed reading 
and copying of a single file with varying size. Each 
measurement was repeated three times and averages of the 
measured values were computed. For comparison we made 
measurements with both a “cold” and a “hot” cache. The 
results were compared with the phone’s native filesystem (C-
drive) and with a Remote Storage Client framework loopback 
mount where the C-drive is mounted through the framework as 
a “remote” filesystem.  

The results of the measurement are shown in Figures 3 and 
4. 
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Fig. 3. Cold Read 
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Fig. 4. Hot Read 

The cold read throughput of a 16384-byte file was 8-9 kB/s 
via WLAN. The throughput is better with larger files and 
poorer with smaller files. With a file size of 1024 bytes the 
throughput degraded to 155 bytes/second. With larger files the 
rate approached 100 kB/s. The C-drive curves in the two 
figures should be identical. The variation is mainly due to the 
tick granularity (1/64 s) of the system’s timer that was used in 
the measurements. 

Hot read uses cached files, so it is independent of the 
transport medium but shows the caching overhead. Since 
caching uses the File Server client API, reading a cached file 
results in two passes through the API.  

WebDAV’s use of XML makes it a verbose and thus 
bandwidth consuming protocol. More importantly, in order to 
optimize throughput in high-latency wireless networks, the 
number of round-trips should be minimized. In our 
experimental runs, the round trips typically consisted of 
queries of the file state by using WebDAV’s PROPFIND 
method in addition to the actual file operations. We still have 
some room for optimization. For example when the remote 
storage client framework receives delete() request from the 
File Server, it first sends via the WebDAV protocol plug-in 
PROPFIND to check whether the file exists on the remote 
server and only then sends DELETE to delete it. The lesson 
learned is that each protocol plug-in implementation must be 
optimized by carefully examining when the error codes 
returned by the server for certain operation can be directly 
mapped to the File Server API error codes, and when some 
extra queries are needed.  For example in this case it is enough 
to just send WebDAV DELETE operation, as HTTP status 
codes have enough information to distinguish between the 
most important File System API errors for this operation. For 
example “404 NOT FOUND” becomes Symbian system error 
“KErrNotFound” and “423 FORBIDDEN” becomes 
“KErrAccessDenied”. 

WebDAV file locking was not enabled during the 
measurements, although in practice, a file that is being copied 
to the server should be locked at the server until the file has 
been fully copied. Therefore, actually, an empty file is put on 
the server in order to have some resource to lock before 
putting the file contents. Some servers may allow creating a 



 

file by setting a lock to a non-existing resource, which would 
obviate putting the empty file. 

VII. RELATED WORK 
A standard way to access remote storage is via a DFS. One 

of the well-known DFSs with disconnected operation support 
is Coda [1], which is a derivative of Andrew File System 
(AFS). On each Coda client, a cache manager, called Venus, 
manages persistently cached whole files and directories. The 
clients can access cached filesystem objects in a disconnected 
mode and fetch files in a weakly connected mode. In 
disconnected mode the updates are immediately applied to the 
locally cached objects and also logged for later propagation to 
servers when network connectivity is restored. In the weakly 
connected mode, the updates can be slowly sent to the server 
with a mechanism called trickle reintegration. The remote 
servers that can be replicated for higher performance and fault 
tolerance, reintegrate conflicting updates originating from 
different clients.  

The Little Work project [9] added disconnected operation 
support to AFS. The design approach is similar to ours. That 
is, there was a relatively widely available distributed file 
system that had to be made usable by mobile clients even 
when there was no connection to the server – and this had to 
be done without modifying the servers. Consequently, the DFS 
client is solely responsible for disconnected operation. Then 
conflict management, and populating the cache and keeping it 
persistent become issues for the client. Little Work resolves 
conflicts automatically by renaming the conflicting entities and 
putting orphaned entities in a central “orphanage”. We also 
automate conflict resolution by renaming. However, we try to 
reconstruct removed directory paths for orphans. 

InterMezzo [10] is a newer DFS that is inspired by Coda. It 
utilizes existing journaling file systems (like ext3 in Linux) in 
transaction handling and guaranteeing consistency. 
Synchronization is achieved by using a special program called 
InterSync, which processes a modification log and fetches 
modified files to the server by using HTTP. Synchronization 
can be symmetric with both the client and the server device 
running a web server. By virtue of the layered approach, 
Intermezzo is relatively simple, and it supports disconnected 
operation, which makes it suitable for mobile environment. A 
primary design goal of InterMezzo is reusing standard 
protocols, but its implementation is tightly coupled to Linux, 
which makes it challenging to deploy it in other platforms. 

WebNFS and later NFSv4 [4] introduced to Sun’s popular 
NFS family of DFSs properties that allow easier use of NFS in 
Internet. The challenges were similar to those we have 
targeted; e.g. high latency and access through Internet 
firewalls. Disconnected operation was omitted from NFSv4 
requirements in the design phase [16]. 

Data synchronization is an integral function in a DFS that 
supports disconnected operation, but synchronization can also 

be performed independently of the file system. Such flexible 
multi-platform utilities include Unison [11] and rsync [12], for 
example. These user-level programs may optimize data 
transfers but they cannot take advantage of the modification 
logging that is built-in in the underlying file systems. Another 
synchronization framework is SyncML [13], which is 
specified in OMA (Open Mobile Alliance) for standardizing 
the way data synchronization is handled on mobile devices. 
SyncML supports synchronization of any data (expressed as a 
collection of key-value pairs). The keys are unique identifiers 
of the objects. If the objects are file-system entities that can 
only be identified with their path names there should be some 
mechanism for constructing the unique identifiers and 
mapping these to path names. SyncML assumes that the client 
and the server maintain a change log and indicate propagation 
of logged events with “anchors”. The protocol also has 
provisions for notifying of conflicts during synchronization. 

WebDAV has been used as a transport protocol in davfs2 
remote file system for Linux [14]. Besides sharing the same 
transport protocol, we also use a similar implementation 
architecture, which is inherited from Coda. However, davfs2 
does not cache files. Other products that integrate WebDAV 
into file system in Desktop OSs include Novell NetDrive 6 
(part of Novell NetWare and Novell iFolder products) for 
Windows and Apple iDisk for MacOS. They also support 
disconnected operation. 

VIII. FUTURE WORK 
Our immediate plans for the future involve areas such as 

access control, buffering and usability.  Reintegration can be 
improved with more fault-tolerance, background operations 
(compare with Coda’s trickle reintegration), delta transfer of 
changes only, etc.  For access control we are considering 
implementing WebDAV ACL access control protocol [15] to 
enable flexible yet safe sharing of information. We also plan to 
follow the development of proposed protocols that could be 
used to implement WebDAV server callbacks [5] [17], and 
possibly adopt one of them, as we see callbacks as a very 
useful optimization in high-latency wireless networks. A 
potential usability improvement could be adding multiple 
mount points under a single drive letter. 
 The new Symbian OS security architecture brings with it 
new challenges. Applications allowed to access networking 
services must have a specific privilege, called the 
“NetworkServices capability”, granted to them. Among other 
things this capability allows controlling which applications 
may perform operations that cost the user money.  Obviously, 
our Remote File Engine must have the NetworkServices 
capability. Since it acts on behalf of client applications, if it 
performed no access control on its own, even applications 
without the NetworkServices capability could use remote 
drives and thus make operations that incur a cost to the user. 
But, since the client application requests are routed via the File 



 

Server, the Remote File Engine is not explicitly aware of the 
identity of the client or the set of capabilities the client holds. 
Thus, the Remote File Engine cannot make access control 
decisions based on the capability set of the client application.  
This type of transitive authorization is a general problem. To 
allow a general solution, intermediate servers must pass 
information about the capabilities held by the clients to 
downstream servers: for example, the Symbian File Server 
should pass with each operation the capabilities of the client 
application to the file system plug-ins (our file system plug-in 
could then pass them on to the Remote File Engine).  

An easy solution then would be to deny remote requests if 
the client application does not have the NetworkServices 
capability. However, this solution would perhaps be 
unnecessary restrictive. Note that mounting remote storages 
happens by calling directly Remote File Engine API (see Fig. 
1). In this case the Remote File Engine is aware of the 
capability set of the client application, and denies the mount 
request unless the client application has the NetworkServices 
capability. Thus any client application is not able to open 
network connections to arbitrary hosts using arbitrary 
protocols, but can only use the existing mounts.  

 Our framework has two separate privileges, mounting and 
accessing remote storages, but the privilege granularity in the 
system does not easily allow making a difference between 
them. If the main concern is spending user’s money, these 
privileges undeniably become very closely related, and can be 
expressed as one. Finding an acceptable but not overly 
restrictive solution to this problem is still an open issue. 

IX. CONCLUSION 
In this paper, we have described the design and 

implementation of a remote storage framework on Symbian 
OS. We have used this framework to implement filesystems 
based on WebDAV and FTP.  We see WebDAV as a very 
good protocol choice since, as an HTTP extension, it is widely 
deployed by existing HTTP servers, yet it provides a good 
base for building both an online and offline distributed 
filesystems. Also firewalls usually allow HTTP packets to pass 
through, so WebDAV can immediately be used in many 
environments. 

Our work is inspired and informed by previous work like 
Coda [1]. We described why Coda couldn’t be used directly in 
our target scenarios and environments. We then described how 
we adapted the Coda concepts to suit our needs. The 
framework is based on a whole-file fetching and whole-file 
caching scheme. However, it also implements configurable 
support for “immediate file access”. This facilitates operation 
of applications that get metadata of a file by reading a small 
part at the head of the file and/or need streaming-type access to 
contents without first caching the whole file. The system also 
allows disconnected operation with support for client-
controlled reintegration and conflict resolution. 
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