
Intuitive security policy configuration in mobile
devices using context profiling

Aditi Gupta∗, Markus Miettinen†, N. Asokan‡ and Marcin Nagy‡
∗Department of Computer Science
Purdue University, United States

Email: aditi@purdue.edu
†Nokia Research Center
Lausanne, Switzerland

Email: markus.j.miettinen@gmail.com
‡Nokia Research Center

Radio Systems Laboratory, Finland
Email: asokan@acm.org, marcin.nagy@aalto.fi

Abstract—Configuring access control policies in mobile devices
can be quite tedious and unintuitive for users. Software designers
attempt to address this problem by setting up default policy
configurations. But such global defaults may not be sensible for
all users. Modern smartphones are capable of sensing a variety of
information about the surrounding environment like Bluetooth
devices, WiFi access points, temperature, ambient light, sound
and location coordinates. We conjecture that profiling this type
of contextual information can be used to infer the familiarity
and safety of a context and aid in access control decisions.
We propose a context profiling framework and describe device
locking as an example application where the locking timeout
and unlocking method are dynamically decided based on the
perceived safety of current context. We report on using datasets
from a large scale smartphone data collection campaign to select
parameters for the context profiling framework. We also describe
a prototype implementation on a smartphone platform. More
generally, we hope that our example design and implementation
spurs further research on the notion of using context profiling
towards automating security policy decisions and identify other
applications.

Keywords-mobile social contexts, context awareness, access
control, geo-social contexts, human computer interaction

I. INTRODUCTION

Smartphones are fast becoming an integral part of life for
many users. They are used for performing everyday tasks like
emails and Internet banking that involve storing sensitive data
on the device. They also contain personal data like photos and
videos, communication logs, location information and logs of
monetary transactions. This calls for strong protection mech-
anisms on mobile devices. Protection mechanisms serve their
purpose only when they are configured with sensible policies
for accessing and sharing data. However, managing a large
number of policy configurations can be quite overwhelming
and unintuitive for a user. Application and service designers
attempt to tackle the usability problem by providing users with
a default policy configuration. But a global default policy may
not be suitable for the needs of every user. Users are therefore
left with two unsatisfactory alternatives: either use one-size-
fits-all default policies which may not be sensible, or, suffer

through manually configuring the bulk of policies by hand
which may not be intuitive or easy-to-use.

Modern smartphones are equipped with a variety of sensors
capable of continuously monitoring a wide range of parameters
such as location, Bluetooth and WiFi devices in the neigh-
borhood, temperature, ambient light, noise levels etc. These
observations characterize the context of a device, and hence
of its user. We argue that by profiling contexts in terms of
how the context parameters change over time, we can infer
appropriate access and sharing policies for sensitive data on
the device, which can help towards at least partially automating
the process of setting sensible policies.

As an illustrative example, consider the case of device
locks: Mobile devices have a device lock feature similar to
the screen-saver lock on PCs. When the device has been idle
for a pre-defined fixed period of time, the device lock kicks in.
Thereafter the user has to unlock the device before accessing
the applications and data on the device. A device may support
multiple unlocking methods like a slider or passcode entry
but a specific unlocking method has to be chosen when the
device lock feature is enabled. In an enterprise, the enterprise
system administrator may force its users to use strong device
lock if the device is capable of accessing enterprise data like
corporate e-mail or intranet websites. Suppose a user, Alice,
finds it very inconvenient having to type in a passcode several
times every day. She may decide to disable the device lock
and risk the compromise of her sensitive data like e-mails, or
she may opt to remove applications like corporate e-mail that
mandate the use of device lock.

Alice’s experience with device lock can be significantly
improved by making the device lock to adapt its behavior
based on the context. Instead of having a fixed pre-defined
timeout for the device lock to kick-in and always using the
same unlocking method, the device lock application could use
dynamic configuration of these parameters depending on the
device context. For example, in a safe and familiar place like
her home where the likelihood of the device being stolen
is low, Alice would like to have a long timeout, and a

“shallow” unlocking method like a slider (that does not tax
her too much), whereas in an unfamiliar place she would
be willing to live with a very short timeout and a “deeper”
unlocking method like passcode entry. Mobile applications
such as “Unlock with WiFi” [1] automatically unlock a device
when it is connected to a certain WiFi access point (such as
Home WiFi). These apps are static and do not capture the
dynamic behavior of the context. For example, a party at home
significantly changes the context and automatic unlocking in
this situation may not be desirable. Thus, there is a need for
dynamic policy configuration (device unlock, in this example)
that adapts to changes in the context. Furthermore, a single
WiFi can be faked to trick these apps to unlock the device,
but faking the entire context is not trivial.

The question then is “how can the device estimate the
familiarity and safety for a context at any given time?” We
propose a framework to estimate the familiarity and safety of
a context at any instant and use these values to dynamically
configure security policies. In this approach, the device period-
ically scans its environment for a variety of context variables
like GPS readings, WiFi access points and Bluetooth devices.
Based on these scans, the device can

• discover contexts which the device encounters repeatedly;
these are likely personal contexts of interest (CoIs) for the
user.

• profile the CoIs by keeping track of which WiFi and
Bluetooth devices are encountered in a given CoI and
the nature of those encounters. These profiles can be used
to estimate the familiarity of a device with respect to a
context. The inferred device familiarity values can then
be used to estimate the familiarity of a context itself.

• use current and historically aggregated context familiarity
information to estimate the safety of the current context.

This basic approach needs to be complemented by allowing
the user to provide feedback about the perceived safety of a
context. Feedback is important in two respects: either the user
wants to speed up the learning process or wants to correct
incorrectly inferred estimated safety of a context.

In this paper, we describe the design of a context profiling
framework to intuitively infer sensible access policies without
user intervention, while still allowing corrective user feedback.
We use the device lock scenario as an example of applying our
context profiler. We describe the implementation architecture
for the context profiler. We then describe several experiments
using a previously available dataset based on which we select
concrete parameters for our prototype of the context profiler.
We provide an evaluation of our model and discuss limitations
and possible enhancements.

User privacy is an explicit design principle for our frame-
work. We do not want either the raw sensor data or the inferred
contextual parameters to leave the user’s device. Therefore, all
of the contextual data is stored and processed locally on the
user’s device itself which enables better security and privacy
protection.

II. CONCEPTS AND DESIGN

A. Context profiling

1) Detecting CoIs: A CoI represents a context that is
significant to the user. In this paper, we limit our scope to
geolocational contexts only. We use a grid-based clustering
algorithm for GPS observations to detect CoIs, which are
regions where the device has been present sufficiently often.
A CoI is represented by a circular region with a fixed ra-
dius centered at the centroid of the locational observations
contributing to the CoI. Once a CoI is detected, we update
its centroid with every new observation that falls within the
CoI. It should be noted that the clustering module can be
replaced by other sophisticated clustering schemes (such as
density based clustering) that detect contexts of arbitrary
shapes. Our profiling framework only requires a mapping of
current position to a CoI so that it can maintain a familiarity
profile of that CoI. We choose grid based clustering since it
is lightweight and efficient.

2) Device familiarity: A user may observe certain devices
more often than others in a given CoI. These devices gradually
become familiar to the user’s device with respect to that
particular CoI. We introduce the notion of familiarity of a
device in a given CoI (hereafter device familiarity) as a
measure of how frequently and how recently a device has been
observed by the user’s device in a given CoI. If a familiar
device stops appearing in a CoI for a long time, its device
familiarity should gradually decrease. Since we do not know
if the device has left the CoI permanently or is temporarily
absent, the device decay should be slow and gradual. This is
achieved by growing the device familiarity of device d in CoI
C with every observation of C that includes d, but decaying d
only if it has not been observed in N0 successive observations
of C, where N0 is a suitably chosen constant. We capture this
behavior of device familiarity using a variation of exponential
moving average function as represented by equation 1 below.

Definition 1: Device familiarity of a device d, with respect
to CoI C after n observations of C is:

DFam(d, C, n) =
αD ∗ occ(d, C, n) + (1− αD) ∗ DFam(d, C, n− 1)

where,

occ(d, C, n) =

1 if d is observed in C
in the nth sample,

0 if d is not observed in C
in the nth sample, and
(n−Nlast) mod N0 = 0.

DFam(d, C, n− 1) otherwise.

(1)

where d was last seen in the Nlast
th sample of C.

The selection of the smoothing factor αD determines the
weight 1 − αD assigned to the old device familiarity value
in computing the new device familiarity value. For example,
for a device present in every observation made in a CoI,

higher values for αD would imply quicker rise in the device
familiarity value.

3) Context familiarity: We estimate the familiarity of a CoI
using two measures: instantaneous familiarity and aggregate
familiarity. Instantaneous familiarity is an estimate of the
familiarity of the CoI the user’s device is currently in, in terms
of the device familiarity values of the devices present in the
CoI at that instant. Aggregate familiarity represents the “usual”
or “typical” familiarity of a CoI over time.

Instantaneous familiarity is computed as a weighted average
of the observed devices with their device familiarity values
constituting the corresponding weights. The intuition is that
the contribution of a device towards instantaneous familiarity
of a CoI should be proportional to its device familiarity in
that CoI. We compute the instantaneous context familiarity
separately for each class of devices and combine them by
taking the average over all device classes. Currently we
consider two classes of devices: Bluetooth and WiFi.

Definition 2: Instantaneous familiarity of a CoI C at its
nth observation can be defined as

instFam(C, n) = 1

|T |
∑
t∈T

instFam(C, n, t) (2)

where T is the set of device classes,

instFam(C, n, t) = 1

|DC,n,t|
∑

d∈DC,n,t

DFam(d, C, n)

and DC,n,t is the set of devices of class t ∈ T observed in C
at its nth observation.
Aggregate familiarity of a CoI represents its “typical” famil-
iarity and is computed as an exponential moving average of
instantaneous familiarity.

Definition 3: Aggregate familiarity of a CoI C after n
observations of C is defined as:

aggFam(C, n) =
αC ∗ instFam(C, n) + (1− αC) ∗ aggFam(C, n− 1)

(3)

where 0 ≤ αC ≤ 1 is a suitably chosen constant.
The smoothing factor αC determines how fast the aggre-
gate familiarity should react to the changes in instantaneous
familiarity. A higher value implies quicker reaction. In the
Parameter Tuning section, we discuss the choice of αD and
αC values used in equations 1 and 3.

4) Notion of Null device: An interesting question is how
to interpret the instantaneous familiarity when no device is
observed in a context. We model the absence of any other
device by introducing the notion of a null device for each
class of devices. A null device is introduced when no other
device in that device class is observed. The device familiarity
of a null device is computed in just the same way as for a
real device using equation 1. Thus, in CoIs where absence of
other devices is the norm, the null devices will have a high
device familiarity which in turn leads to familiarity of the CoI
to be high when no devices are present. On the other hand,

in other CoIs, the familiarity of the null device will be low
which causes the familiarity of the CoI to drop when no other
devices are observed.

5) Inferring context in absence of GPS fix: Sometimes,
especially indoors, the device may fail to get a GPS fix. But
we still need to infer the current context since access control
has to be enforced. WiFi- and cell-tower-based localization
is typically used for positioning in the absence of GPS. This
requires the device to scan the neighborhood for WiFi access
points or cell-tower identifiers and map them to a geospatial
location with the help of a central server. Given our design
principle of not allowing any context data to leave the device,
we prefer not to rely on server-assisted positioning.

Instead, we use purely local mechanisms to infer the user’s
context. The snapshot of (stationary) WiFi devices observed in
a CoI is fairly static and can be used to attribute user’s current
position to a known CoI. We also leverage the fact that the
instantaneous WiFi familiarity score of a CoI represents how
familiar the current snapshot of WiFi devices is to this CoI to
map a WiFi snapshot to its most familiar CoI.

Inference of user’s context is done in two steps. First,
we compute candidate instantaneous WiFi familiarity for the
current snapshot of WiFi devices with respect to all known
CoIs for the user. We use a minimum threshold for WiFi
instantaneous familiarity to discard obviously incorrect CoI
choices. The current position is then attributed to the CoI
with maximum WiFi instantaneous familiarity score. If none of
the candidate instantaneous familiarity scores exceed the min-
imum familiarity threshold, we use Jaccard’s distance measure
to compute the distance between the current snapshot of WiFi
devices and the snapshot of WiFi devices corresponding to the
last known observation with an associated GPS reading. If the
two WiFi snapshots are close enough, we attribute the current
observation to the same location.

6) From familiarity to safety: Familiarity can have different
interpretations in terms of safety for different applications. A
familiar place may be considered safe by a certain application,
and unsafe by some other application. For example, applica-
tions where anonymity is desired would treat a familiar place
as unsafe and an unfamiliar place as safe. On the other hand, a
configurable device lock mechanism would treat an unfamiliar
place as unsafe. Perception of safety can also vary from user
to user: two different users co-located in the same context may
perceive different safety levels for the exact same context.
In other words, how best to infer the safety level from the
familiarity estimates is a difficult question. Below, we outline
the current, somewhat simplistic, approach we have taken for
mapping from familiarity to safety. This remains an active area
of current work for us.

We propose a familiarity to safety mapping for device lock
and other applications with similar requirements. For device
lock, we need to assess the safety level of the current context
of the device so that the appropriate locking timeout and
unlocking method can be enforced. We define the security
model for device lock application as follows. The goal is
to prevent anyone other than the owner from misusing the

Fig. 1. Familiarity-to-safety mappings

device in an unlocked state. This can be done either by a thief
who has stolen a device or a curious individual. Misuse of
device may involve access to personal information, installation
of malware/spyware and using user’s credentials to carry out
transactions maliciously.

Studies [2], [3] in various contexts have shown that famil-
iarity breeds trust and reduces the risk perception. Further,
statistics reported by Bureau of Justice [4] for year 2006
indicate that at least 59.2% of theft crimes were performed
by strangers. Thus, it seems reasonable to assume that in
the case of applications like device lock, the presence of
strangers implies a potentially unsafe situation. We begin with
the following intuition: a CoI that has a high familiarity both
typically and currently is probably safe; as a dual, a CoI that
has a low familiarity both typically and currently is probably
unsafe.

We incorporate the above observations in our algorithm to
estimate the safety level of the current context (Figure 1). The
algorithm uses the instantaneous and aggregate familiarity of
the current CoI to estimate the safety level as one of high
(GREEN), medium (YELLOW) or low (RED). To do this, we
use two thresholds: a high familiarity threshold (HT) and a
low familiarity threshold (LT) to delimit “high” and “low”
values for familiarity (both instantaneous and aggregate). In
the Parameter Tuning section, we estimate reasonable values
for these thresholds.

If the current context does not correspond to a CoI, we
conclude that the safety level is low (RED). This is consistent
with algorithm in Figure 1 because the aggregate familiarity
of an unknown context is zero.

7) Device lock use-case: The inferred safety level can
be used to automatically configure the unlock policy for a
device lock. We map each safety level to a different unlocking
method and locking timeout. For instance, GREEN safety may
correspond to “slide-to-unlock” method which is less secure
and more usable while RED safety may correspond to a more
secure PIN-based unlock method. We couple this with a low
watermark approach to decide the unlocking method: if a
device is locked in a safe context, a change in context can lock
it deeper (i.e., requiring a stronger unlocking method), but the
converse is not true. The unlocking method will correspond to
the safety of the least safe context encountered since the device
was locked. This low watermark approach is also intended as
a defense against adversarial learning: for example, if a thief

steals the device from an unsafe location but leaves it in house
for a day, the context profiler will eventually learn that the
thief’s house is a “safe” place, but that does not help the thief
because he has to first unlock the device using the stronger
unlocking method.

B. Handling user feedback

In automated access control enforcement, it is important to
incorporate feedback from the user in the decision making pro-
cess. Since our context profiler’s safety algorithm ultimately
bases its computations only on a few classes of sensor inputs,
it may sometimes estimate the safety level incorrectly. User
feedback is important in such cases so that the inferencing
process can be tweaked to match user’s expectations. Similarly,
user feedback can be used to shortcut the learning process
so that contexts that the user knows will become eventually
familiar (like her home) can be deemed familiar more quickly.

A user can provide feedback by specifying the safety level
of a context as perceived by him. The user may provide
feedback on the long-term behavior of a CoI by marking it
as ‘Usually safe’ or ‘Usually unsafe’. Alternatively, he may
want to indicate a short-term or temporary feedback like
‘Now safe’ or ‘Now unsafe’ for the current CoI. When a user
provides ‘Usually safe’ feedback for the current CoI, he is also
prompted to provide ‘Now Safe’ feedback, if appropriate. This
provides a quick boost to the short term safety value.

We base our feedback handling approach on the following
two principles:

1) The effect of feedback should be immediately visible to
the user. However, it should not permanently relax the
safety computations, but allow for the system to react in
case of sudden drops in familiarity scores.

2) When a user provides feedback, it is regarding the
safety of a context and not its familiarity. Thus, the
feedback handling mechanism should only tweak the
familiarity to safety mapping and not the familiarity
scores themselves.

We extend the basic familiarity-to-safety algorithm pre-
sented in Figure 1 to incorporate user feedback. To address
the above principles, the instantaneous and aggregate famil-
iarity scores are artificially boosted according to the feedback
provided. These modified scores (referred to as instFamF and
aggFamF in the discussion that follows) replace the original
familiarity scores used in Figure 1.

Long term feedback reflects on the ‘typical’ behavior of
a context. Our intuition is that such feedback would be
provided in the learning phase to shortcut the learning process.
The effect of long-term feedback should correct the safety
computations until the context has been properly learned.
This can be achieved by combining long term feedback and
the aggregate familiarity using a dynamic weight wLT that
gradually fades away. We use a time decay curve to decay the
value of wLT .

Definition 4: aggFamF is the feedback adjusted score that
replaces the aggregate familiarity score in algorithm in Fig 1.

It is computed as:

aggFamF (C, n) =
(1− wLT) ∗ aggFam(C, n) + wLT ∗ LT Feedback

(4)

where LT Feedback indicates long term feedback, with value
either 0 (‘Usually unsafe’) or 1 (‘Usually safe’).

The dynamic weight wLT for long term feedback is com-
puted as:

wLT =

{
1− (

nf

Nf
)
c if nf ≤ Nf

0 otherwise.
(5)

where nf is the number of observations since the long
term feedback was given, Nf is the maximum number of
observations after which the feedback effect should wear off
and c is a constant that determines the speed of decay.

The long term feedback weight should decay slowly in the
beginning so that the device has enough time to learn the
context and then gradually fade away to 0. The constant Nf is
decided based on the length of learning period, which depends
on the αC and αD values. One may question as to why long
term feedback should be forgotten over time. Permanently
overriding the profiler’s decision by user’s feedback prevents
the profiler from reacting to genuine drops in safety of a
usually safe CoI (for example, a party at home). Thus, we
chose slow decay of long term feedback to allow adaptive
measures instead of permanent override.

Short term feedback reflects on the safety of current snap-
shot of a CoI. It indicates a temporary change in the behavior
of a CoI and should fade away after a short time. We compute
this score by combining short term feedback and instantaneous
familiarity using a dynamic weight wST .

Definition 5: instFamF is the feedback adjusted score that
replaces the instantaneous familiarity score in algorithm in
Fig 1. It is computed as:

instFamF (C, n) =
(1− wST) ∗ instFam(C, n) + wST ∗ ST Feedback

(6)

where ST Feedback indicates short term feedback, with value
either 0 (‘Now unsafe’) or 1 (‘Now safe’).

The short term dynamic weight wST should depend on
the time elapsed and the change in the snapshot of observed
devices since the feedback was given.

wST =

{
1−max { t−t0

tmax−t0 ,Dist(St, St0)} if t ≤ tmax

0 otherwise.
(7)

where t0 is time at which short term feedback was given, t
is the current time, tmax is time after which short term effect
should wear off (we use tmax = 60 mins.), St0 is the snapshot
of devices at time t0, St is snapshot of devices at time t and
Dist() is the distance metric, the definition of which is based
on the following rationale:

• Familiar devices in St0 , but not St should increase the
distance measure

• Unfamiliar devices in St but not in St0 should increase
the distance measure

• Unfamiliar transient devices in St0 , but not in St should
not increase the distance measure

• Familiar devices in St but not in St0 should not increase
the distance measure

Let n denote the number of observations of context C at
current time t and occ(d, S1, S2) = 1 if device d ∈ (S1−S2)
and 0 otherwise. Then we define1

Dist(St0 , St) =
∑

di∈St0

DFam(di, C, n) ∗ occ(di, St0 , St)

+
∑
di∈St

(1− DFam(di, C, n)) ∗ occ(di, St, St0)

|St0∪St| (8)

The effective safety level is inferred using Figure 1 where
instFamF and aggFamF will serve the purpose of instanta-
neous and aggregate familiarity respectively.

III. SYSTEM ARCHITECTURE

The system architecture for the context profiler software is
described in Figure 2. It consists of three main modules:
• Data Collection module is responsible for continuously

sensing the current context and collecting raw data about
various context variables

• CoI Detection module periodically clusters the location
data collected by the data collection module to detect
CoIs for the user, based on their significance to the user
which is determined by the amount of time the user
spends in a particular place.

• Context Analysis module is responsible for analyzing
the raw data and infer familiarity and safety scores for
the current context. For each CoI, it maintains a context
profile to keep track of the devices that are observed
in a CoI and their familiarity scores with respect to
that CoI. Based on the current snapshot of the CoI, it
computes instantaneous and aggregate familiarity scores
using equations 2 and 3 respectively. These familiarity
scores are used to infer the safety of the context as
discussed earlier.

In our current implementation, the data collection module
scans the environment every five minutes to record the GPS
co-ordinates (if available) as well as the currently visible
Bluetooth devices and WiFi access points. This information
is stored in a database on the device itself and is used by
other modules to identify and analyze CoIs. This module can
be extended to sense other kinds of context variables.

For CoI detection, we used a simple grid-based clustering
algorithm with a grid cell width of 250 meters. We required
a cluster to have at least 1% of all observations within a time

1We could define Dist() simply as the Jaccard distance Jδ(St0 , St), but
that will not distinguish devices based on familiarity.

Context Analysis

CoI Detection

Familiarity
and Safety

scores

Data collection

Bluetooth devices
WiFi devices

GPS data

Context Profiles

CoIs

(1)

(2)

(3)

(4)

Fig. 2. System components: (1) Data collection module collects GPS, Blue-
tooth, WiFi data; (2) GPS data is clustered to detect CoIs; (3) Context analysis
module updates context-specific information and (4) computes familiarity and
safety scores for the current context.

window of 30 days which corresponds to 8640 observations
at our current rate of sampling. Consequently, the detection
threshold of 1% (≈ 86 observations) would correspond to
roughly an equivalent of seven hours of observations of a place
in the GPS trace data for the place to become identified by
our clustering algorithm as a CoI. We associated Bluetooth
and WiFi observations having a GPS fix within 100 meters
from a cluster’s centroid as belonging to that CoI. Note that a
CoI is a circle with a fixed (100m) radius and is significantly
smaller than a grid cell. The grid cells are used only to speed
up clustering and do not dictate the size of a CoI.

The context analysis module periodically generates the fa-
miliarity and safety scores for the current context. These values
can be used by applications to automatically configure access
policies that depend on the current context. In the device
locking use case, the safety scores are used to dynamically
configure the unlocking method and the locking timeout of
the device.

IV. PARAMETER TUNING

We ran several experiments using traces from the Lausanne
Data Collection Campaign, a large-scale data collection ex-
periment focusing on mobile device users’ behavioral and
contextual data traces [5], [6] in order to gain the insights
and heuristics needed to determine suitable parameters for a
concrete instantiation of the context profiler framework. The
dataset contains GPS location traces and regular scans of WiFi
and Bluetooth radio environments of a large number of users.

To match our device implementation as closely as possible,
we filtered the dataset to include one Bluetooth and WiFi scan
observation per five-minute observation window, if available.
Each of these Bluetooth/WiFi observations was matched with
the closest GPS fix within the time window, if available. By
applying our CoI identification algorithms, we identified a total
of 167 CoIs for 37 users, giving on average 5.22 CoIs per user
(median 5 CoIs).

In the device lock scenario, the context profiler effects
visible to the end user are (a) how long does it take for a
safe CoI to be recognized as such by the context profiler and
(b) how volatile is the safety labeling of a safe CoI. As a
guiding principle, we want the context profiler to learn safe
CoIs within two days. At our current sampling frequency of
every five minutes, a day consists of 288 observations. We
conjectured that a user is likely to spend about a third of
a day in a given safe CoI. Thus we need safe CoIs to be
deemed safe in about 200 observations. We set this as our
approximate target. We then determined suitable values for
various parameters as discussed below.

Smoothing factor for Device familiarity αD: From Equa-
tion 1 we see that higher values for αD will imply that
the device familiarity DFam will grow quickly if a device
continues to appear in successive samples in a CoI. Given our
rough target of recognizing a safe CoI within 200 observations,
we decided to select αd so that a device that appears in
about 20 consecutive samples of a CoI would have a DFam
reaching 0.9. Using Equation 1, we compute this value of αD

to be 0.1. This is in line with the standard practice of choosing
a smoothing factor between 0.05 and 0.3 for processes that are
locally constant (Chapter 8 of [7]).

Decay interval for Device familiarity N0: To select the
value of N0 in equation 1, we reasoned that the familiarity
of a device should decay if it did not show up even once
in consecutive samples spanning a day. Again, based on the
assumption that a user may spend about a third of a day (≈
96 observations) in a given safe CoI, we chose N0 to be 100.

Smoothing factor for Context familiarity αC : In Equa-
tion 3 the smoothing factor αC affects the lag time of the
smoothing applied to the aggregate familiarity scores. The lag
time determines the number of observations required for the
aggregate familiarity score to react to changes in the trend of
the instantaneous familiarity scores. Consequently, the choice
of αC will impact both the user-visible effects discussed
above.

We presume that most users have at least two frequently
visited CoIs (e.g. their home and workplace). We further
assume that the majority of such CoIs can be presumed to
be ‘familiar’ places for the users. We denote the set of the
top-two most frequently observed CoIs of each user as the
set of frequent CoIs. We studied how different choices of
αC affects the evolution of the aggregate familiarity score in
frequent CoIs over time. Figure 3 shows the result: the y-axis
on the left shows the average aggregate familiarity for frequent
CoIs; the y-axis on the right shows the average of the standard
deviation of the aggregate familiarity of the same, calculated
over the latest 100 observations at each point. We observed
the following from Figure 3:
• values of αC greater than 0.05 have little impact in the

behavior of the average aggregate familiarity score.
• the “knee” in the graph near the 200th observation implies

that most of the frequent CoIs reach a steady state after
this point.

• the average standard deviation of aggregate familiarity

Fig. 3. Behavior of aggregate familiarity score in frequent CoIs

scores is reasonably small (less than 5%) for all values
of αC less than 0.05 beyond the steady state.

Based on these results, we chose αC as 0.05.
Long term feedback duration Nf : The number of ob-

servations for frequent CoIs to reach steady state (200) is a
suitable value for Nf in equation 5.

Safety thresholds HT and LT : In Figure 1, a natural value
for HT is the point reached by the average aggregate score of
frequent CoIs at the steady state. From Figure 3, this is 0.85.
To choose the value of the low threshold LT , we used the
following rationale. We expect that for most users, a familiar
CoI like home will exhibit stable behavior in the long-term.
Thus we can choose LT such that the aggregate familiarity
score of most familiar CoIs will be above this value. We resort
to a 90-10 rule of thumb to assume that 90 percent of the
set of frequent CoIs are likely to be stable. Figure 4 shows
the aggregate familiarity score of the CoI at the lowest tenth
percentile for a given number of observations. From the graph,
we can see that 0.4 appears to be a good choice for LT because
at all times after reaching the steady state (refer to Figure 3),
all frequent CoIs in the set above the 10th percentile have
aggregate familiarity scores above this value.

V. VALIDATION OF THE MODEL

A. Comparison to ground truth

Once the parameters were determined, we applied our
familiarity and safety algorithms to the observation data related
to the frequent CoIs of each user. Ideally, the evaluation
of the model would be based on ground truth information
indicating the user’s perception of the safety of a CoI over
time. Unfortunately the dataset we used did not have ground
truth information at this granularity. However, it did have
information where the users have labeled locations using one
of several pre-defined labels such as “My home”, “My main
work place”, “Shop” etc. We grouped these labels into “safe”

Fig. 4. Determining the low threshold

and “unsafe” as shown in Table I. We ignored locations with
labels whose safety classification from a user’s perspective is
unclear (e.g., labels such as “Home of a friend”).

TABLE I
CLASSIFICATIONS OF PLACE LABELS IN GROUND TRUTH DATA

Safe Unsafe
My home Holiday resort or vacation spot
My freetime home Shop or shopping center
My main workplace Location related to transportation

(e.g. bus stop)
Place for indoor sports (e.g. gym)
Place for outdoor sports (e.g. walking)

Unclassified
Home of a friend My main school or college place
My other work place Other
I don’t know

Making the simplifying assumption that the CoIs identified
by the users as “safe” or “unsafe” in the ground truth data
are always safe or unsafe respectively, we estimated the effec-
tiveness of the context profiler with the parameters selected
above as follows. We identified the sets as in Table II. Note
that this labeling information we now use for the validation of
the model was not part of the data we used in choosing the
parameters for the model in Section IV.

TABLE II
SETS USED IN VALIDATION

Sets in ground truth data #
Observations in “Safe” CoIs Gsafe 51446
Observations in “Unsafe” CoIs Gunsafe 2607
Observations in Unclassified CoIs GUC 10119
Sets identified by Context Profiler #
“Safe” observations CGREEN 55234
“Unsafe”observations CRED 2862
Neither CY ELLOW 6076
Set intersections #
True “Safe” obs. |Gsafe ∩ CGREEN | 47197
Other “Safe” obs. |{Gunsafe ∪GUC} ∩ CGREEN | 8037
True “Unsafe” obs. |Gunsafe ∩ CRED| 889
Other “Unsafe” obs. |{Gsafe ∪GUC} ∩ CRED| 1973

We then calculated the following figures of merit for rec-
ognizing “safe” situations:

Formula value
Precision |Gsafe∩CGREEN |

|CGREEN | 0.854

Recall |Gsafe∩CGREEN |
|Gsafe| 0.917

Fallout w.r.t. “unsafe” |Gunsafe∩CGREEN |
|Gunsafe| 0.152

Fallout w.r.t. “unclassified” |GUC∩CGREEN |
|GUC | 0.755

and analogously the following for recognizing “unsafe” situ-
ations:

Formula value
Precision |Gunsafe∩CRED|

|CRED| 0.311

Recall |Gunsafe∩CRED|
|Gunsafe| 0.341

Fallout w.r.t “safe” |Gsafe∩CRED|
|Gsafe| 0.019

Fallout w.r.t “unclassified” |GUC∩CRED|
|GUC | 0.096

The precision and recall of recognizing safe situations are
sufficiently high. The fallout value reflecting the likelihood of
unsafe CoIs receiving ‘safe’ classifications is slightly higher
than desirable (15%), but still in acceptable range. The fallout
with regard to ‘unclassified’ CoIs is remarkably high (75%).
This may be caused by the fact that a major fraction of the
CoIs in the ‘unclassified’ set GUC actually represent places
that are familiar to the user (e.g. ‘Home of a friend’,or, ‘My
other work place’ might be such places). The precision of
recognizing unsafe situations is low, but acceptable as it errs
on the safe side. The recall is low, implying that the context
profiler recognized only a third of the unsafe observations
as such. However, among the 6076 YELLOW observations
made by the context profiler (the set CY ELLOW), 1321 were
in locations labeled as “unsafe” in the ground truth data. If we
combine this set with CRED, then the recall figure climbs up
to 0.848. This suggests that the YELLOW safety level should
not be considered significantly safer than RED. Overall, the
figures of merit validate the choice of parameters.

B. Implementation

We have prototyped the context profiler with the chosen
parameters on Linux-based smartphones (Nokia N900 and
N9). We also implemented three different unlocking methods

Fig. 5. Device implementation: feedback options and inferred safety

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50
 100

 150
 200

 250
 300

a
g
g
F

a
m

 o
r

a
g
g
F

a
m

F

Number of observations

Aggregate Familiarity with and without feedback

Without feedback
With feedback, c=1
With feedback, c=2

With feedback, c=10
ST feedback
LT feedback

Fig. 6. Effect of user feedback during learning

(passcode, draw-a-secret, and slider) which were linked to
the RED, YELLOW, and GREEN safety levels respectively.
The three safety levels also corresponded to three different
default timeout values of 1 minute, 5 minutes and 30 minutes
respectively.

C. Effect of user feedback

We studied the effect of user feedback using our prototype
context profiler. The user can provide feedback about a CoI’s
safety at any time to modify its behavior using a GUI as shown
in Figure 5(a.). Figure 6 shows the effect of ‘Usually safe’
feedback that was provided by the user for a context when the
context profiler was still in learning phase. The user provided
‘Usually safe’ feedback after approximately 20 observations of
this CoI. At this point, the aggregate familiarity was artificially
boosted to a value 1 (h̃igh) and this boost was decayed slowly.
As can be seen in this figure, the effective familiarity stayed
high until the CoI was learnt. Thus, the user could shortcut
the learning phase by providing a long term feedback.

The graph shows the effect of using different c values
in equation 5. While a bigger value of c provides a steady
behavior until CoI has been learnt, it also reduces the CoI’s
tolerance to genuine drops in instantaneous familiarity. To
address this tradeoff and from the behavior of aggFamF in

Fig. 7. Safety algorithm with variance

Figure 6, we decide to use c = 2.

VI. DISCUSSION

Alternate safety algorithm

The safety algorithm discussed in Fig. 1 can be further
strengthened by incorporating volatility of the CoI as a factor.
CoIs that are stable (less volatile) should be less tolerant
to changes in instantaneous familiarity. Even small changes
should severely affect the perceived safety of a stable CoI.
Similarly, CoIs with high variance should be more tolerant
to fluctuations. The variance of instantaneous familiarity can
be an indicator for the volatility of a CoI. A context can be
deemed volatile if the variance is above a certain threshold. To
incorporate volatility of a CoI in the safety algorithm, we use
its modified version as shown in Fig 7. This algorithm is not
used when the user feedback is in effect, since the volatility
of the CoI cannot be reliably determined in such cases.

Other considerations

Collection of user’s contextual data by different services
usually raises privacy concerns. However, in our approach this
data collection is used to help users in intuitive enforcement
of access control and never leaves the device’s storage.

The security requirements of context profiling depends on
the application. An attacker who can fake Bluetooth or WiFi
addresses can influence the estimated familiarity scores. This
can be addressed by revising the familiarity calculations by
giving greater weights to devices whose identities are crypto-
graphically verifiable based on existing security associations
with those devices. For the device lock application this is
not a significant concern because we target users like Alice
(described in the Introduction section) who do not use any
device lock in the first place. Compared to this starting point, if
the use of the context profiler improves the perceived usability
of device lock for such users, it can only improve the security!

VII. LIMITATIONS

Continuous context profiling comes at a cost of increased
battery consumption. This limitation can be overcome by using
intelligent sampling techniques. For example, instead of per-
forming frequent GPS scanning, one could use accelerometer
triggered scanning so that GPS is turned on only when motion

is detected. Another technique to conserve battery could be to
use WiFi access points to detect geo-location instead of GPS.
Our initial prototype does not incorporate these enhancements
yet. However, intelligent sampling would be highly desirable
in a usable product.

For long term user feedback, in addition to “usually unsafe”,
it is reasonable to let the user assert “always unsafe” in a CoI
so that that CoI is tagged as unsafe regardless of the familiarity
calculation. Similarly, if we can develop a metric to measure
the “similarity” of CoIs, then when a user asserts a CoI as
“unsafe”, that may be a cue to infer that the user may assert
the same in “similar” CoIs.

Although the analysis we performed in Section V-A gives
us some confidence that our approach is valid, it suffers from
the fact that the ground truth data we had available to us was
not fine-grained enough. To get more accurate ground truth
data we would need to conduct a targeted user study.

A common concern in context-aware systems is “intelligi-
bility”: they should be able to explain to the users the bases
and implications of the inferences they make. We have taken
some steps towards intelligibility of the context profiler (like
showing inferred safety level and the familiarity scores used
in the inference), we need a more thorough analysis of how
to make the context profiler more intelligible.

VIII. RELATED WORK

Location, WiFi and Bluetooth traces provide rich context
information and have been utilized for several other applica-
tions as well. The Jyotish framework [8] utilizes the joint WiFi
and Bluetooth traces for predicting the movement of users. It
clusters the WiFi access point information to detect locations
and uses Bluetooth traces to predict the most likely future
contacts. Our work uses WiFi and Bluetooth traces to estimate
context familiarity and safety.

Zhou et al. [9] and Nurmi et al. [10] use the location traces
along with other information to identify meaningful places
like home and work for their user. These meaningful places
have several applications in location based services. We also
exploit similar facts to identify points of interest and build up
a context familiarity profile for these places.

The Familiar Stranger project [11] studies the properties
and phenomenon of Familiar Stranger relationships. A familiar
stranger is a stranger that the user repeatedly encounters but
never interacts with. It uses a notion of device familiarity that
is derived from the number of encounters with the stranger’s
device. The degree of familiarity is used to visualize the
number of familiar strangers present at a specific place to the
user. Unlike this work, we tie the notion of device familiarity
to a given place and use it to estimate the familiarity and safety
of a context.

Greenstadt and Beal [12] propose that mobile devices can
utilize cues from user behavior to identify the users and
make security decisions on their behalf. Jakobsson et al. [13]
emphasize on the need for authentication techniques on mobile
device with no or very limited user involvement. They utilize
cues from user behavior like phone activity, mobility etc. to

implicitly authenticate the user to the device and to provide
addition assurance in sensitive transactions. Our primary focus
is not on the method for user authentication, but on how to
select one out of many authentication methods (with varying
usability and strength) based on the safety of current context.

In [14], Danezis discusses how various social contexts can
be automatically inferred for users from the social graphs
around them. Privacy settings for these social contexts can
be extracted based on the policy that content generated in a
social context should be accessible only in that context. We
focus on using device’s context to configure access policies.

Conti et al. [15] propose a framework, CRePe, for enforcing
context-related policies for smartphones that requires manual
configuration of policies. Our system profiles the user’s context
to estimate its familiarity and automatically infer policies. Our
system can be integrated with the CRePE framework to allow
a user to specify policies based on context familiarity as a
logical sensor in addition to other sensor values.

Kelley et al. [16] introduce the notion of user-controllable
policy learning where the user and system refine a common
policy model in an incremental manner. Their system benefits
from user feedback to gradually learn and identify policy
improvements. Our model also incorporates user feedback to
improve the decision making process.

Edwards et al. [17] highlight the pitfalls of automating
access control where the control over security decisions is
removed from the user’s hands and given to the system. In
our approach, we do not take away the control from a user.
Instead, we assist the user by suggesting policy decisions and
also incorporating user feedback.

IX. CONCLUSION

We described a context profiler which uses location traces
to detect places of interest for a user and profiles the Bluetooth
and WiFi devices in such places to estimate the familiarity of
a place. We showed how familiarity can be used to infer safety
and use this safety score to make access control decisions. Our
context profiler incorporates user feedback to shortcut learning
and temporarily modify the behavior of our system. We chose
parameters of the context profiler by running experiments
using a large dataset and evaluated the effectiveness of our
approach using ground truth data from the dataset. We have
prototyped the context profiler on smartphones.

Although this paper focuses on a particular use case, we
believe that our notion of using context profiling to infer
security policies is a powerful tool. It can ease the cognitive
burden on ordinary users in setting and managing appropriate
security policies on mass-market personal devices. We believe
that there are many other applications besides device lock
that can benefit from this approach: for example, guiding
the user towards context-appropriate consumption of content
(e.g., warning users when they are about to open e-mail
tagged as confidential while they are in a public place or
when they are about to surf to a website labeled as not-safe-
for-work when they are at work). We hope that our paper

raises the discussion on such applications and motivates fellow
researchers to design them.

In our current work, we are making several improvements
to the context profiler design and implementation including in-
corporating the notion of types of time periods while profiling
contexts (e.g., weekends vs. weekdays), and ways of taking
individual user perceptions of safety into account. We also
plan to conduct a user study for both evaluating the usability
as well as to collect more accurate ground truth data.

Acknowledgment: Marcin Nagy’s work on this paper at his
home institution, Aalto University, was supported in part by
the European Community’s Seventh Framework Programme
under grant agreement no. 258414 (SCAMPI).

REFERENCES

[1] “Unlock With WiFi App,” http://benhirashima.com/unlockwithwifi/.
[2] A. Barr, “Familiarity and trust: An experimental investigation,”

Centre for the Study of African Economies, University of Oxford,
CSAE Working Paper Series 1999-23, 1999. [Online]. Available:
http://ideas.repec.org/p/csa/wpaper/1999-23.html

[3] J. Zhang, “Familiarity and trust: Measuring familiarity with a web site,”
in In Proceedings of the 2nd Annual Conference on Privacy, Trust and
Security (PST 2004, 2004, pp. 23–28.

[4] P. A. Klaus and C. T. Maston, “Criminal victimization in the
united states, 2006, statistical tables,” National Crime Victimization
Survey, 2008. [Online]. Available: http://bjs.ojp.usdoj.gov/content/pub/
pdf/cvus0602.pdf

[5] N. Kiukkonen, J. Blom, O. Dousse, and J. Laurila, “Towards rich mobile
phone datasets: Lausanne data collection campaign,” in ICPS 2010: The
7th International Conference on Pervasive Services, 2010.

[6] “Lausanne data collection campaign,” 2011, [referenced: 2011-09-23].
[Online]. Available: http://research.nokia.com/page/11367

[7] R. G. Brown, Smoothing, Forecasting and Prediction of Discrete Time
Series. Dover Phoenix Edition, 2004.

[8] L. Vu, Q. Do, and K. Nahrstedt, “Jyotish: A novel framework for con-
structing predictive model of people movement from joint wifi/bluetooth
trace,” in 9th IEEE International Conference on Pervasive Computing
and Communications (PerCom), 2011.

[9] C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and L. Terveen,
“Discovering personally meaningful places: An interactive clustering
approach,” ACM Trans. Inf. Syst., vol. 25, July 2007.

[10] P. Nurmi and S. Bhattacharya, “Identifying meaningful places: The non-
parametric way,” in Proceedings of the 6th International Conference on
Pervasive Computing, ser. Pervasive ’08. Springer-Verlag, 2008, pp.
111–127.

[11] E. Paulos and E. Goodman, “The familiar stranger: anxiety, comfort,
and play in public places,” in CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 2004, pp.
223–230.

[12] R. Greenstadt and J. Beal, “Cognitive security for personal devices,” in
Proc. of AISec’08. ACM, Oct 2008, pp. 27–30.

[13] M. Jakobsson, E. Shi, P. Golle, and R. Chow, “Implicit authentication
for mobile devices,” in Proceedings of the 4th USENIX conference on
Hot topics in security, ser. HotSec’09. Berkeley, CA, USA: USENIX
Association, 2009. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1855628.1855637

[14] G. Danezis, “Inferring privacy policies for social networking services,”
in Proc. of AISec’09. ACM, Nov 2009, pp. 5–9.

[15] M. Conti, V. T. N. Nguyen, and B. Crispo, “Crepe: context-related
policy enforcement for android,” in Proceedings of the 13th international
conference on Information security, ser. ISC’10. Springer-Verlag, 2011,
pp. 331–345.

[16] P. G. Kelley, P. Hankes Drielsma, N. Sadeh, and L. F. Cranor, “User-
controllable learning of security and privacy policies,” in Proceedings
of the 1st ACM workshop on Workshop on AISec, ser. AISec ’08.
New York, NY, USA: ACM, 2008, pp. 11–18. [Online]. Available:
http://doi.acm.org/10.1145/1456377.1456380

[17] W. K. Edwards, E. S. Poole, and J. Stoll, “Security automation consid-
ered harmful?” in NSPW ’07: Proceedings of the 2007 Workshop on
New Security Paradigms. ACM, 2008, pp. 33–42.

